如图,△PQR是等边三角形,∠APB=120°.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 07:38:33
如图,△PQR是等边三角形,∠APB=120°.
若AP=2根号7,AQ=2,PB=根号14,求RQ的长和△PRB的面积
若AP=2根号7,AQ=2,PB=根号14,求RQ的长和△PRB的面积
∠APQ+∠BPR=120-60=60
∠A+∠APQ=∠PQR=60
所以∠A=∠BPR
又∠AQP=∠PRB=120
所以三角形AQP相似于三角形PRB
所以AQ/PR=AP/PB=PQ/RB
PR=AQ*PB/AP=2*√14/(2√7)=√2
RQ=PR=√2
RB=PQ/√2=1
所以△PRB的面积=1/2*RB*QR*sin60=1/2*1*√2*√3/2=√6/4
再问: sin60什么意思啊
再答: 三角函数 正弦 就是求三角形PBR的底边BR的高,它的高也就是等边三角形PQR的底边QR上的高 如果没学三角函数,可以用勾股定理 高=√(PQ^2-(QR/2)^2) 得到的结果是相同的
再问: 1/2*1*√2*√3/2 不是1/2*(1+√2/2)*√3/2吗
∠A+∠APQ=∠PQR=60
所以∠A=∠BPR
又∠AQP=∠PRB=120
所以三角形AQP相似于三角形PRB
所以AQ/PR=AP/PB=PQ/RB
PR=AQ*PB/AP=2*√14/(2√7)=√2
RQ=PR=√2
RB=PQ/√2=1
所以△PRB的面积=1/2*RB*QR*sin60=1/2*1*√2*√3/2=√6/4
再问: sin60什么意思啊
再答: 三角函数 正弦 就是求三角形PBR的底边BR的高,它的高也就是等边三角形PQR的底边QR上的高 如果没学三角函数,可以用勾股定理 高=√(PQ^2-(QR/2)^2) 得到的结果是相同的
再问: 1/2*1*√2*√3/2 不是1/2*(1+√2/2)*√3/2吗
已知:如图,△PQR是等边三角形,∠APB=120°
已知三角形PQR是等边三角形,且角APB=120度(1)请写出图中的相似三角形,并
(1)如图1,点C、D在线段AB上,△PCD是等边三角形,且∠APB=120°,求证:△ACP∽△PDB;
如图,已知AB=AC,∠APC=60° (1)求证:△ABC是等边三角形.(2)求∠APB的度数
如图,点C,D在线段AB上,△PCD是等边三角形,且△ACP相似△PDB,求∠APB的大小
如图,点C,D在线段AB上,△PCD是等边三角形,且△ACP与△PDB相似,求∠APB的大小.
如图:点p是等边三角形ABC内一点,PA=3 PB=5 PC=4.求:∠APB 度数
1`如图,设P是等边三角形ABC内的一点,PA=3,PB=4,PC=5,求∠APB度数.
P是等边三角形ABC外的一点,∠APB=60°,求证;PA=PB+PC
如图,点C,D在线段AB上,△PCD是等边三角形,且△ACP~△PDB,求 角APB 的度数,
如图,点C,D在线段AB上,△PCD是等边三角形,且△ACP~△PDB,求角APB的大小.
如图,已知P是等边三角形ABC内一点,AP=3,BP=4,CP=5,求角APB的值