设a,b,c是互不相等的三个实数,如果A(a,a^3),B(b,b^3),C(c,c^3)在同一直线上,求证:a+b+c
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 07:00:17
设a,b,c是互不相等的三个实数,如果A(a,a^3),B(b,b^3),C(c,c^3)在同一直线上,求证:a+b+c=0
因为A,B和C在同一条直线上,我们取任意两点,所得到的斜率应该一样的,不妨取A,C 和 A,B 来计算斜率
由A,C算得的斜率为 k1=(c^3-a^3)/(c-a)
由A,B算得的斜率为 k2=(b^3-a^3)/(b-a)
因为k1=k2,所以
(c^3-a^3)/(c-a)=(b^3-a^3)/(b-a)……①
由立方差公式
c^3-a^3=(c-a)*(c^2+c*a+a^2),我们可以知道(c^3-a^3)/(c-a)=c^2+c*a+a^2
因此,由①得
c^2+c*a+a^2=b^2+b*a+a^2
c^2-b^2=b*a-c*a
(c-b)*(c+b)=(b-c)*a
c+b=-a
a+b+c=0 证毕
由A,C算得的斜率为 k1=(c^3-a^3)/(c-a)
由A,B算得的斜率为 k2=(b^3-a^3)/(b-a)
因为k1=k2,所以
(c^3-a^3)/(c-a)=(b^3-a^3)/(b-a)……①
由立方差公式
c^3-a^3=(c-a)*(c^2+c*a+a^2),我们可以知道(c^3-a^3)/(c-a)=c^2+c*a+a^2
因此,由①得
c^2+c*a+a^2=b^2+b*a+a^2
c^2-b^2=b*a-c*a
(c-b)*(c+b)=(b-c)*a
c+b=-a
a+b+c=0 证毕
在三角形ABC中a b c分别是三个内角A B C的对边 且a b c互不相等 设a=4 c=3 A=2C 求cosC的
设a,b,c,属于正实数,求证a/(b+c)+b/(c+a)+c/(a+b)>=2/3
已知a,b,c为互不相等的实数,求证:a^4+b^4+c^4>abc(a+b+c)
设A,B,C是三个互不相等的正整数,求证:
已知a,b,c是不全相等的正数,求证(b+c-a)/a + (c+a-b)/b + (a+b-c)/c >3
已知a,b,c为互不相等的实数,且满足(a-c)^2-4(b-a)(c-b)=0求证:2b=a+c
已知a,b,c为互不相等实数,求证a4+b4+c4>abc(a+b+c)
已知a,b,c是实数,求证a*a+b*b+c*c>=ab+3b+2c
在等式A×(B+C)=110+C中,A、B、C是3个互不相等的质数,那么A+B+C=______.
(a+b)/(a-b)=(b+c)/2(b-c)=(c+a)/3(c-a),abc互不相等,证8a+9b+5c=o
设a b c是互不相等的自然数 a×b×b×c×c×c=540 则a+b+c的值
若互不相等的实数a、b、c成等差数列,c、a、b成等比数列,且a+3b+c=10,则a=______.