作业帮 > 数学 > 作业

已知f(x)=2x²-x-1,g(x)=3x+1-m,当x属于[-1,2)时,f(x)≥g(x)恒成立,求m的

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 08:26:47
已知f(x)=2x²-x-1,g(x)=3x+1-m,当x属于[-1,2)时,f(x)≥g(x)恒成立,求m的取值范围.
已知f(x)=2x²-x-1,g(x)=3x+1-m,当x属于[-1,2)时,f(x)≥g(x)恒成立,求m的
解由x属于[-1,2)时,f(x)≥g(x)恒成立,
即x属于[-1,2)时,2x²-x-1≥3x+1-m恒成立,
即x属于[-1,2)时,m≥3x+1-2x²+x+1恒成立,
即x属于[-1,2)时,m≥-2x²+4x+2恒成立,
设g(x)=-2x²+4x+2,x属于[-1,2)
即m≥g(x)的最大值
由g(x)=-2x²+4x+2=-2(x-1)²+4
故当x=1时,g(x)有最大值g(1)=4
即m≥4.