证明向量组a1 a2 a3 ..am 线性相关的充分必要条件是 ai 可以用其前面的向量线性线性表示,主要证明下必要性
证明:N维向量组a1,a2.an线性无关的充分必要条件是任意n维向量都可以表示为a1,a2.an的线性组合.
a1,a2,…an是一组n维向量,证明:它们线性无关的充分必要条件是任一n维向量组都可以由它们线性表示.
证明n维向量组a1,a2,…,an线性无关的充分必要条件是:任一n维向量a都可以由它们线性表示.
两个线性代数的证明题证明:若向量组a1,a2,a3,...am线性无关,a1,a2,a3,...am,b线性相关,则b可
设a1,a2.an属于R^n,证明a1,a2.an线性无关的充分必要条件是任意向量都可以由它们线性表示!主要是不会由a1
设向量组a1,a2,a3.am中a1不等于0,且每个ai不是看它前面i-1个向量的线性组合,证明:a1,a2,.am线性
设向量组a1a2a3线性相关,a2a3a4线性无关,证明向量a1必可表示为a2,a3,a4的线性组合
设向量组a1,a2,a3线性相关,向量组a2,a3,a4线性无关,证明a1能由a2,a3线性表示
设向量组a1,a2,a3线性相关,向量组a2,a3,a4线性无关,证明(1):a1能由a2,a3线性表示 (2):a4不
设向量组a1,a2,a3,a4线性相关,a4不能由a1,a2,a3线性表示,证明:向量组a1a2a3线性相关.
线性代数线性相关问题有这样一个定理向量组a1,a2,..,as线性相关的充分必要条件是有ai可用其余s-1个向量组线性表
原题:向量组a1,a2,a3线性相关,a2,a3,a4线性无关,证明 a4不能由a1,a2,a3线性表示.