F为y^2=4x焦点,A,B,C为其上三点,FA+FB+FC=0,OFA,OFB,OFC的面积为S1,S2,S3,求(S
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 09:00:44
F为y^2=4x焦点,A,B,C为其上三点,FA+FB+FC=0,OFA,OFB,OFC的面积为S1,S2,S3,求(S1)2+(S2)2+(S3)
设F为抛物线y^2=4x的焦点,A,B,C为该抛物线上三点,O为坐标原点,若向量FA+向量FB+向量FC=向量0,三角形OFA,OFB,OFC的面积分别为S1,S2,S3,则(S1)^2+(S2)^2+(S3)^2D的值是(____)?
A,9 B,6 C,4 D,3
看到问题后务必速回答!
设F为抛物线y^2=4x的焦点,A,B,C为该抛物线上三点,O为坐标原点,若向量FA+向量FB+向量FC=向量0,三角形OFA,OFB,OFC的面积分别为S1,S2,S3,则(S1)^2+(S2)^2+(S3)^2D的值是(____)?
A,9 B,6 C,4 D,3
看到问题后务必速回答!
依题设设A,B,C三点的坐标分别为A(y1^2/4,y1),B(y2^2/4,y2),C(y3^2/4,y3),因为抛物线的焦点为F(1,0),所以 向量FA+向量FB+向量FC
=((y1^2/4)-1,y1)+((y2^2/4)-1,y2)+((y3^2/4)-1,y3)
=([(y1^2+y2^2+y3^2)/4]-3,y1+y2+y3)
=(0,0)
所以[(y1^2+y2^2+y3^2)/4]-3=0,解得y1^2+y2^2+y3^2=12
因为三个三角形同底OF=1,所以(S1)^2+(S2)^2+(S3)^2
=(1/4)*(y1^2+y2^2+y3^2)
=12/4=3
故选D.
=((y1^2/4)-1,y1)+((y2^2/4)-1,y2)+((y3^2/4)-1,y3)
=([(y1^2+y2^2+y3^2)/4]-3,y1+y2+y3)
=(0,0)
所以[(y1^2+y2^2+y3^2)/4]-3=0,解得y1^2+y2^2+y3^2=12
因为三个三角形同底OF=1,所以(S1)^2+(S2)^2+(S3)^2
=(1/4)*(y1^2+y2^2+y3^2)
=12/4=3
故选D.
设F为抛物线y^2=4x的焦点,A.B.C为该抛物线上三点,若向量FA+向量FB+向量FC=0,则/FA/+/FB/+/
设F为抛物线y2=4x的焦点,A,B,C为该抛物线上三点,若FA+FB+FC=0,则|FA|+|FB|+|FC|的值为(
F为抛物线y方=4x的焦点,A,B,C为抛物线上的三点,若向量FA+向量FB+向量FC=0向量,则|FA|+|FB|+|
设F为抛物线y2=4X的焦点.A.B.C为该抛物线上三点,若FA+FB+FC=O.则∣FA∣+∣FB∣+∣FC∣=?
设F为抛物线y^2=4x的焦点,A,B,C为该抛物线上3点,若FA(向量)+FB(向量)+FC(向量)=0(向量)
1.设F为抛物线 y^2=4x 的焦点,A、B、C为抛物线上3点,若FA+FB+F=0 (是向量) 则|FA|+|FB|
已知C为y^2=2PX(P大于0)的准线于X轴的交点,点F为焦点.A,B为抛物线上两点若FA+FB+2FC=0
若点F为抛物线y2=4x的焦点,A,B,C为抛物线上三点,O为坐标原点,若F是△ABC的重心,△OFA,△OFB,△OF
已知点C为y2=2px(p>0)的准线与x轴的交点,点F为焦点,点A、B为抛物线上两个点,若FA+FB+2FC=0,则向
设F为抛物线y^2=4x的焦点,A、B为该抛物线上两点,若向量FA+2FB=0,则|FA|+2|FB|=______
已知直线y=k[x+2][k>0]与抛物线C:y2=8x相交于A,B两点,F为抛物线C的焦点,若|FA|=2|FB|,求
已知点c为y方=2px(p>0)的准线与x轴的交点,点f为焦点,点a,b为抛物线上的两点,若向量fa+向量fb+2向量f