已知点Q是圆C:(x-4)^2+y^2=9上的动点,A(-2,3),且向量AP=1/2向量PQ
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 16:29:52
已知点Q是圆C:(x-4)^2+y^2=9上的动点,A(-2,3),且向量AP=1/2向量PQ
(1)求动点P的轨迹方程;
(2)若直线x-y+m=0与点P的轨迹相交于M、N两点,求向量OM*向量ON的最小值
(1)求动点P的轨迹方程;
(2)若直线x-y+m=0与点P的轨迹相交于M、N两点,求向量OM*向量ON的最小值
(1) 设P(x,y)Q(xq,yq)
AP=(x+2,y-3)
PQ=(xq-x,yq-y)
AP=1/2PQ
x+2=1/2(xq-x)
y-3=1/2(yq-y)
xq=3x+4
yq=3y-6
Q 在圆C上
(3x+4-4)^2+(3y-6)^2=9
即x^2+(y-2)^2=1
(2)设P点圆轨迹的圆心为D(0,2),半径长为r
MN中点为E
OM*ON=(OE+EM)*(OE+EN)=OE^2+OE(EM+EN)+EM*EN=OE^2-EM^2
=OE^2-(r^2-DE^2)=OE^2+DE^2-1
设E(x1,y1)M(xm,ym)N(xn,yn)
x1=(xn+xm)/2
直线代人圆方程得
x^2+(x+m-2)^2=1
2x^2+2(m-2)x+(m-2)^2-1=0
x1=(xn+xm)/2=(2-m)/2
代人直线方程得y1=(m+2)/2
OM*ON=OE^2+DE^2-1=x1^2+y1^2+x1^2+(y1-2)^2-1
=1/4((m-2)^2+(m+2)^2+(m-2)^2+(m-2)^2)-1
=1/4(4m^2-8m+16)-1=m^2-2m+3=(m-1)^2+2>=2
等号当m=1是成立
m=1时,E 点坐标为(1/2,3/2)
(1/2)^2+(3/2-2)^2=1/2
AP=(x+2,y-3)
PQ=(xq-x,yq-y)
AP=1/2PQ
x+2=1/2(xq-x)
y-3=1/2(yq-y)
xq=3x+4
yq=3y-6
Q 在圆C上
(3x+4-4)^2+(3y-6)^2=9
即x^2+(y-2)^2=1
(2)设P点圆轨迹的圆心为D(0,2),半径长为r
MN中点为E
OM*ON=(OE+EM)*(OE+EN)=OE^2+OE(EM+EN)+EM*EN=OE^2-EM^2
=OE^2-(r^2-DE^2)=OE^2+DE^2-1
设E(x1,y1)M(xm,ym)N(xn,yn)
x1=(xn+xm)/2
直线代人圆方程得
x^2+(x+m-2)^2=1
2x^2+2(m-2)x+(m-2)^2-1=0
x1=(xn+xm)/2=(2-m)/2
代人直线方程得y1=(m+2)/2
OM*ON=OE^2+DE^2-1=x1^2+y1^2+x1^2+(y1-2)^2-1
=1/4((m-2)^2+(m+2)^2+(m-2)^2+(m-2)^2)-1
=1/4(4m^2-8m+16)-1=m^2-2m+3=(m-1)^2+2>=2
等号当m=1是成立
m=1时,E 点坐标为(1/2,3/2)
(1/2)^2+(3/2-2)^2=1/2
已知a(1/4,0),b(4,0),点b是y轴上的动点,过点b做ab的垂线l交X轴于点q,若向量Ap+向量Aq=2向量a
已知C(-3,0),P在y轴上,Q在x轴的正半轴上,点M在直线PQ上,且满足向量CP*向量PM=0向量PM=1/2向量M
已知定点Q(4,0),P为圆x^2+y^2=4上的一个动点,点M在线段PQ上,PQ向量=2MQ向量,求点M的轨迹方程
已知点A(1,0)和圆C:x^2+y^2=4上一点R,动点P满足向量RA=2向量AP,则点P的轨迹方程为()
已知点E(3,0),PQ是x^2/36+y^2/9=1上的两个动点,且PE垂直EQ,求向量EP乘以向量QP的范围
已知点A(√2.0),B(-√2.0),动点P在Y轴上的射影为Q.向量PA点乘向量PB=2向量PQ^nbsp;(1)求动
已知A(1,0),P,Q是圆x^2+y^2=5上的两个动点,AP⊥AQ,则PQ的最小值是() A.2 B.2√3 C.3
已知椭圆x^2/4+y^2/9=1上任意一点P,由点P向x轴作垂线段PQ,垂足为Q,点M在PQ上,且向量PM=2向量MQ
已知定点A(0,4)和双曲线X^2-4Y^2=16上的动点B,且向量PB=3向量AP.求p点的轨迹方程
已知定点A(4,0)和圆M:x^2+y^2=9/4,设B是圆M上的动点,点P满足AP向量=2PB向量,
已知平面上一定点c(4,0)和一定直线L:x=1,p为该平面上的一动点,作PQ⊥L,垂足为Q,且(向量PC+2向量PQ)
在直角坐标平面xOy中,已知点A(3,2),点B在圆x^2+y^2=1上运动,动点P满足向量AP=向量PB,则点P的轨迹