化简 sin(π+α)+sin(2π+α)+sin(3π+α)+……+sin(kπ+α) k属于Z
已知α、β≠kπ+π2(k∈Z),且sinθ+cosθ=2sinα , sinθcosθ=sin
sin(kπ-α)*cos〔(k-1)π-α〕/sin〔(k+1)π+α〕*cos(kπ+α) ,k属于Z
已知sinα=4sin(α+β),α+β≠kπ+π/2(k∈Z).求证tan(α+β)=sinβ/(cosβ-4)
化简[sin(kπ-α)*cos(kπ+α)]/{sin[(k+1)π+α]*cos[(k+1)π-α]}
化简 sin(4k-1/4π- α)+cos(4k+1/4π -α)(k∈Z)
化简sin(4k-1/4π- α)+cos(4k+1/4π -α)(k∈Z)
设k∈Z,化简sin(kπ−α)cos[(k−1)π−α]sin[(k+1)π+α]cos(kπ+α)的结果是( )
弧度制下的角的表示sin(2kπ+α)=sinα (k∈Z) cos(2kπ+α)=cosα (k∈Z) tan(2
当2kπ-π/4≤α≤2kπ+π/4(k∈Z),化简√(1-2sinα×cosα)+√(1+2sinα×cosα)
3sinβ=sin(2α+β),α≠2kπ+π/2 ,α+β≠kπ+π/2 (k∈z)求证tan(α+β)=2tanα
α属于(0,π/2)且2sin²α-sinαcosα-3cos²α=0求sin(α+π/4)/sin
sin(kπ-α)cos【(k-1)π-α】/sin【(k+1)π+α】cos(kπ+α) (k∈Z) 希望老师能详细解