函数f(x)=ax3+bx2+cx的导函数为f'(x),且满足f(1)=0,f'(0)f'(1)>0
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 07:48:05
函数f(x)=ax3+bx2+cx的导函数为f'(x),且满足f(1)=0,f'(0)f'(1)>0
(1)证明函数f(x)必有两个极值点(2)求证0<c/a<1
(1)证明函数f(x)必有两个极值点(2)求证0<c/a<1
f'(x)=3ax^2+2bx+c
f(1)=0,得到a+b+c=0
f'(0)f'(1)>0,得到c(3a+2b+c)>0,c(a-c)>0
f'(x)的判别式为4b^2-12ac=4(a+c)^2-12ac=4(a-c)^2+4ac
无论ac是正还是负,判别式都大于0(显然a,c不能同时为0,否则b=0)
故函数f(x)必有两个极值点
c(a-c)>0;ac(1-c/a)>0,同时除以a^2;得到c/a(1-c/a)>0,即0<c/a<1
f(1)=0,得到a+b+c=0
f'(0)f'(1)>0,得到c(3a+2b+c)>0,c(a-c)>0
f'(x)的判别式为4b^2-12ac=4(a+c)^2-12ac=4(a-c)^2+4ac
无论ac是正还是负,判别式都大于0(显然a,c不能同时为0,否则b=0)
故函数f(x)必有两个极值点
c(a-c)>0;ac(1-c/a)>0,同时除以a^2;得到c/a(1-c/a)>0,即0<c/a<1
已知函数g(x)=ax3+bx2+cx(a∈R且a≠0),g(-1)=0,则g(x)的导函数f(x)满足f(0)f(1)
已知函数g(x)=ax3+bx2+cx(a不等于0),g(-1)=0,且g(x)的导函数f(x)满足f(0)f(1)
已知函数g(X)=ax3+bx2+cx+d(a不等于0)的导函数为f(x),a+b+c=0,且f(0)f(1)>0,设X
已知函数F(x)=13ax3+bx2+cx(a≠0),F'(-1)=0.
已知函数f(x)=ax3+bx2+cx+a2的单减区间为(1,2),且满足f(0)=1,对任意m(0,2],
对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f″(x)是函数y=f(x)的导函数y=f′(x) 的
已知f(x)=ax3+bx2+cx,当x=1时,函数f(x)有极大值4,当x=3时,函数f(x)有极小值0,则f(x)=
(2013•眉山二模)已知函数g(x)=ax3+bx2+cx+d(a≠0)的导函数为f(x),a+b+c=0,且f(0)
已知函数f(x)=ax3+bx2+cx+d的图象如图,则( )
已知a,b,c,d是不全为0的实数,函数f(x)=bx2+cx+d,g(x)=ax3+bx2+cx+d,方程f(x)=0
设函数f(x)=ax3+bx2+cx(a≠0)是增函数.(详题见补充)
已知函数f(x)=ax3+bx2+cx(a不等0,x属于R)为奇函数,且f(x)在x=1处取极大值2.