已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率e=22,左、右焦点分别为F1、F2,点P(2,3),点F2在线
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 10:42:25
已知椭圆C:
x
(Ⅰ)由椭圆C的离心率e=
2 2, 得 c a= 2 2,其中c= a2−c2, 椭圆C的左、右焦点分别为F1(-c,0),F2(c,0), 又点F2在线段PF1的中垂线上, ∴|F1F2|=|PF2|,∴(2c)2=( 3)2+(2-c)2, 解得a= 2,b=c=1, ∴椭圆C的方程为 x2 2+y2=1. (Ⅱ)证明:由题意知直线MN存在斜率,设其方程为y=kx+m, 由
已知F1、F2分别为椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点,椭圆C上的点A(1,32)到F1、F2两点
已知椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1(-c,0),F2(c,0),若椭圆上存在点P使asi
已知点P是椭圆x2a2+y2b2=1(a>b>0,xy≠0)上的动点,F1(-c,0)、F2(c,0)为椭圆的左、右焦点
设F1,F2分别是椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点,点P在椭圆C上,线段PF1的中点在y轴上,若
已知椭圆C:x2a2+y2b2=1(a>b>0),F1,F2为其左、右焦点,P为椭圆C上除长轴端点外的任一点,△F1PF
(2013•临沂二模)x2a2+y2b2=1(a>b>0)如图,已知椭圆C:的左、右焦点分别为F1、F2,离心率为32,
设椭圆C:x2a2+y2b2=1(a>b>0)的上顶点为A,椭圆C上两点P,Q在X轴上的射影分别为左焦点F1和右焦点F2
已知F1,F2分别为椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点,过F1且垂直于x轴的直线交椭圆C于A、B两
已知双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1、F2,点P在双曲线的右支上,且|PF1|=3|
已知椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1、F2,过F1作倾斜角为30°的直线与椭圆有一个交点P
双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1(-c,0),F2(c,0).若双曲线上存在点P使s
如图,已知F1,F2是椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点,点P在椭圆C上,线段PF2与圆x2+y2
|