(3²+1²)/(3²-1²)+(5²+1)/(5²-1)+
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 15:22:48
(3²+1²)/(3²-1²)+(5²+1)/(5²-1)+(7²+1)/7²-1)+……+(1995²+1)/(1995²-1)=
(3²+1²)/(3²-1²)=1+2/[2×4]=1+(4-2)/[2×4]1+1/2-1/4
(5²+1)/(5²-1)=1+2/(5²-1)=1+(6-4)/[4×6]=1+1/4-1/6
.
(1995²+1)/(1995²-1)=1+(1996-1994)/[1994×1996]=1+1/1994-1/1996
(3²+1²)/(3²-1²)+(5²+1)/(5²-1)+(7²+1)/7²-1)+……+(1995²+1)/(1995²-1)
=997+1/2-1/1996
=997又997/1996
(5²+1)/(5²-1)=1+2/(5²-1)=1+(6-4)/[4×6]=1+1/4-1/6
.
(1995²+1)/(1995²-1)=1+(1996-1994)/[1994×1996]=1+1/1994-1/1996
(3²+1²)/(3²-1²)+(5²+1)/(5²-1)+(7²+1)/7²-1)+……+(1995²+1)/(1995²-1)
=997+1/2-1/1996
=997又997/1996
1²+2²+3²+4²+5²
1²-2²+3²-4²+5²-6²+7²-8
求和:1²-2²+3²-4²+5²-6²+…+99²
证明:1²+2²+3²+4²+5²+6²+.+k²
(1-2²)+3²-4²+5²-6²+7²-8²+
1²+3²+5²+.+23²
计算:1²-2²+3²-4²+5²-6²+...+49
计算1-2²+3²-4²+5²-6²+…+99²-100
求和:Sn=1²-2²+3²-4²+5²-6²+...+99
(1²+3²+5²+……+99²)-(2²+4²+6
1²+2²+3²+4²+5² +···+n²=?
利用因式分解计算1-2²+3²-4²+5²-6²+.+99²