已知f(x)在x=0处连续,且lim(x趋向0)[f(x)/(e^(x/2))-1]=3,求f(0)+f~(0)
已知f(x)在x=0处连续,且lim(x趋向0)[f(x)/(e^(x/2))-1]=3,求f(0)+f~(0)
lim(x趋向于0)f(2x)/x=1,且f(x)连续,则f'(0)=
若已知函数f(x)在x=0处是连续的,lim x趋向0 f(x)+f(-x)/x存在,能否判断出f(x)和f(-x)的极
lim(x趋向于0) f(x)-f(-x)/x 存在 且函数在x=0出连续,为什么f(0)=0?
高数 设f(x)具有连续的二阶导数,且lim[f(x)/x]=0,在x趋向于0的时候.且f’‘(x)=4,求lim[1+
设f(x)在x=0处连续,且lim (f(x)-1)/x=-1,x→0.,求f(0)
求lim(x→0)[(xf'(x))/(2f(x))]^(1/x),其中f(x)在x=0点某邻域内有三阶连续导数,f(0
设函数f(x)有二阶连续导数,且(x->0)lim[f(x)-a]/[e^x^2-1]=0,(x->0)lim[f ‘’
设函数f(x)有二姐连续导数,且(x->0)lim[f(x)-a]/[e^x^2-1]=0,(x->0)lim[f ‘’
已知f(x)连续,f(x)=e^x+∫(0到x)(2+t-x)f(x)dx,求f(x)
设f(x)在0到正无穷大上可导,f(x)>0,limf(x)=1(x趋向正无穷大),若lim[f(x+nx)/f(x)]
设f(x)有二阶连续导数且f'(x)=0,lim(x趋向于0)f''(x)/|x|=1则