自极点O作射线与直线ρcosθ=4相交于点M,在OM上取一点P,使得OM•OP=12
有关极坐标方程自极点O作射线与直线ρcos =4相交于点M,在OM上取一点P,使得OM•OP=12,求点P的
从极点o作直线与另一直线ρCOSα=4相交与点M,在OM上取一点P,使OM*OP=12求点p的轨迹方程
1.从极点O作直线与另一直线l:ρcosθ=4相交于点M,在OM上任取一点,使OM·OP=12.设R为l上任意一点,则R
从极点O作直线与另一直线L:pcosθ=4相交于点M,在OM上取一点P,使向量OM*向量OP=12.
1,在极坐标系中,从极点 O 作直线与另一直线 l :ρ cos θ = 4 相交于点 M,OM 在 上取一点 P,使
从极点O作直线与另一直线L:Pcos(θ-π/4)=4√2相交于点M,在线段OM上取一点P,使|OM||0P|=12,求
极坐标问题1道!3.从极点O作直线,它与给定直线ρsinθ=8交于点P,在OP上取一点M,使|OM|×|OP|=16,求
过极点O作动直线与已知直线x=4相交于Q点 在OQ上取一点P 使OP乘以OQ=12 求点P的轨迹
已知AB是圆O的直径,且AB的绝对值=2a,点M为圆上一动点,作MN垂直于AB,垂足为N,在OM上取点P,使OP的绝对值
如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角形的直角顶点放在点O处,一边OM在射线
如图,已知M是∠AOB内的一点,满足点M到OA,OB的两边的距离MC,MD相等,做射线OM,在射线OM上取一点P,连接P
已知M是∠AOB内的一点,满足点M到OA,OB的两边的距离MC,MD相等,做射线OM,在射线OM上取一点P,连接PC,P