求不定积分∫xarctanxdx
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/20 03:40:06
求不定积分∫xarctanxdx
∫ x * arctanx dx
= ∫ arctanx d(x²/2)
= (x²/2)arctanx - (1/2)∫ x² d(arctanx)
= (x²/2)arctanx - (1/2)∫ x²/(x² + 1) dx
= (x²/2)arctanx - (1/2)∫ (x² + 1 - 1)/(x² + 1) dx
= (x²/2)arctanx - (1/2)∫ dx + (1/2)∫ dx/(x² + 1)
= (x²/2)arctanx - x/2 + (1/2)arctanx + C
= ∫ arctanx d(x²/2)
= (x²/2)arctanx - (1/2)∫ x² d(arctanx)
= (x²/2)arctanx - (1/2)∫ x²/(x² + 1) dx
= (x²/2)arctanx - (1/2)∫ (x² + 1 - 1)/(x² + 1) dx
= (x²/2)arctanx - (1/2)∫ dx + (1/2)∫ dx/(x² + 1)
= (x²/2)arctanx - x/2 + (1/2)arctanx + C