若椭圆x^2/a^2+y^2/b^2=1(a>b>1)内有圆x^2+y^2=1,该圆的切线与椭圆交于A,B两点,
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 02:26:17
若椭圆x^2/a^2+y^2/b^2=1(a>b>1)内有圆x^2+y^2=1,该圆的切线与椭圆交于A,B两点,
且满足向量OA•向量OB=0(其中O为坐标原点),则9a^2+16b^2的最小值是?
且满足向量OA•向量OB=0(其中O为坐标原点),则9a^2+16b^2的最小值是?
解析:设切线方程为y=kx+m
带入椭圆方程得关于x的一元二次方程
韦达定理
x1+x2=-2kma2/(a2k2+b2)
x1x2=a2(m2-b2)/(a2k2+b2)
OA*OB=0
所以x1x2+y1y2=x1x2+k2x1x2+km(x1+x2)+m2=0
所以(k2+1)a2(m2-b2)-2k2m2a2+m2(a2k2+b2)=0
所以a2(m2-b2k2-b2)+m2b2=0 ***
因为y=kx+m是单位圆的切线,
所以|m|/√(k2+1)=1
即m2=k2+1
带入***式子
a2(1-b2)m2+m2b2=0
所以a2+b2=a2b2 由于a>b,所以a2b2=a2+b2>2b2→a2>2
得b2=a2/(a2-1)=1+1/(a2-1)
带入得9a2+16b2=9a2+16/(a2-1)+16=9(a2-1)+16/(a2-1)+25
>=2√9*16+25=49
当且仅当a2-1=4/3时取到最大值
带入椭圆方程得关于x的一元二次方程
韦达定理
x1+x2=-2kma2/(a2k2+b2)
x1x2=a2(m2-b2)/(a2k2+b2)
OA*OB=0
所以x1x2+y1y2=x1x2+k2x1x2+km(x1+x2)+m2=0
所以(k2+1)a2(m2-b2)-2k2m2a2+m2(a2k2+b2)=0
所以a2(m2-b2k2-b2)+m2b2=0 ***
因为y=kx+m是单位圆的切线,
所以|m|/√(k2+1)=1
即m2=k2+1
带入***式子
a2(1-b2)m2+m2b2=0
所以a2+b2=a2b2 由于a>b,所以a2b2=a2+b2>2b2→a2>2
得b2=a2/(a2-1)=1+1/(a2-1)
带入得9a2+16b2=9a2+16/(a2-1)+16=9(a2-1)+16/(a2-1)+25
>=2√9*16+25=49
当且仅当a2-1=4/3时取到最大值
已知椭圆G:X6^2/4+Y^2=1.过点(m,0)作圆x^2+y^2=1的切线L交椭圆G于A.B两点.(1)求椭圆G的
过椭圆x^2 /5 +y^2 =1 的右焦点与x轴垂直的直线交椭圆于A,B两点,线段AB的长
高中数学解析几何:已知椭圆E:(x^2)/4+y^2=1,直线L:x=my+1与椭圆交于不同的两点A,B
椭圆x^2/a^2+y^2/b^2=1的长轴为短轴的根号3倍,直线y=x与椭圆交于A,B两点,C为椭圆的右顶点,向量OA
已知椭圆G:x^2+y^2/4=1,过点p(0,m)做圆x2+y2=1的切线l,l交椭圆G于A,B两点求椭圆G的焦点坐标
过椭圆x^2/a^2+ y^2/b^2=1的右焦点F作直线交椭圆于A,B两点,求证以弦AB为直径的圆与与椭圆的右准线相离
已知椭圆:x^2/3+y^2=1,过坐标原点o做两条互相垂直的射线,与椭圆分别交于A、B两点.
已知椭圆x^2/4+y^2/3=1的左右焦点分别为F1F2,一条直线L经过F1与椭圆交于A,B两点.
已知直线l:6x-5y-28=0与椭圆x^2/a^2+y^2/b^2=1(a>b>0)交于M,N两点,B是椭圆的上顶点,
如图,直线y=kx+b与椭圆x^2/4+y^2=1,交于A、B两点,记△AOB的面积为S.
直线y=kx b与椭圆x^2/4 y^2=1交于A,B两点,记三角形AOB的面积为S.
椭圆C方程为(x^2)/4 +(Y^2)/2=1,若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆X