已知abc是不全相等的正数,求证:2(a³+b³+c³)>a²(b+c)+b
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 00:56:55
已知abc是不全相等的正数,求证:2(a³+b³+c³)>a²(b+c)+b²(c+a)+c²(a+b)
此题考查平均值不等式:(x1³+x2³+x3³)/3≥(x1x2x3)^(1/3)
证明:
2(a³+b³+c³)
=2a³+2b³+2c³
=(a³+a³+b³)/3+(a³+a³+c³)/3+(b³+b³+a³)/3+(b³+b³+c³)/3+(c³+c³+a³)/3+(c³+c³+b³)/3
≥(a³*a³*b³)^(1/3)+(a³*a³*c³)^(1/3)+(b³*b³*a³)^(1/3)+(b³*b³*c³)^(1/3)+(c³*c³*a³)^(1/3)+(c³*c³*b³)^(1/3)
=a²b+a²c+b²a+b²c+c²a+c²b
=a²(b+c)+b²(c+a)+c²(a+b)
取等条件为a=b=c
根据题意,a,b,c不全相等,故等号无法取到,因此:
2(a³+b³+c³)>a²(b+c)+b²(c+a)+c²(a+b)
证毕.
再问: 2a³+2b³+2c³到(a³+a³+b³)/3+(a³+a³+c³)/3+(b³+b³+a³)/3+(b³+b³+c³)/3+(c³+c³+a³)/3+(c³+c³+b³)/3咋来的
再答: 2a³+2b³+2c³ 将其中的2a³,2b³,2c³分别拆成6个a³/3,然后再重新分配位置得到的。 你可以在(a³+a³+b³)/3+(a³+a³+c³)/3+(b³+b³+a³)/3+(b³+b³+c³)/3+(c³+c³+a³)/3+(c³+c³+b³)/3中合并同类项查看一下,它与2a³+2b³+2c³是一样的。 之所以这样拆分,是为了能凑出a²b+a²c+b²a+b²c+c²a+c²b
证明:
2(a³+b³+c³)
=2a³+2b³+2c³
=(a³+a³+b³)/3+(a³+a³+c³)/3+(b³+b³+a³)/3+(b³+b³+c³)/3+(c³+c³+a³)/3+(c³+c³+b³)/3
≥(a³*a³*b³)^(1/3)+(a³*a³*c³)^(1/3)+(b³*b³*a³)^(1/3)+(b³*b³*c³)^(1/3)+(c³*c³*a³)^(1/3)+(c³*c³*b³)^(1/3)
=a²b+a²c+b²a+b²c+c²a+c²b
=a²(b+c)+b²(c+a)+c²(a+b)
取等条件为a=b=c
根据题意,a,b,c不全相等,故等号无法取到,因此:
2(a³+b³+c³)>a²(b+c)+b²(c+a)+c²(a+b)
证毕.
再问: 2a³+2b³+2c³到(a³+a³+b³)/3+(a³+a³+c³)/3+(b³+b³+a³)/3+(b³+b³+c³)/3+(c³+c³+a³)/3+(c³+c³+b³)/3咋来的
再答: 2a³+2b³+2c³ 将其中的2a³,2b³,2c³分别拆成6个a³/3,然后再重新分配位置得到的。 你可以在(a³+a³+b³)/3+(a³+a³+c³)/3+(b³+b³+a³)/3+(b³+b³+c³)/3+(c³+c³+a³)/3+(c³+c³+b³)/3中合并同类项查看一下,它与2a³+2b³+2c³是一样的。 之所以这样拆分,是为了能凑出a²b+a²c+b²a+b²c+c²a+c²b
已知a,b,c是不全相等的正数求证(a+b)(b+c)(c+a)>8abc
已知abc是三个不全相等的正数,求证:(b+c)/a+(a+c)/b+(a+b)/c
设a,b,c是不全相等的正数,求证
已知a,b,c是不全相等的正数,求证(b+c-a)/a + (c+a-b)/b + (a+b-c)/c >3
已知a,b,c是不全相等的正数,求证(a^2+1)(b^2+1)(c^2+1)>8abc
已知a,b,c是不全相等的正数,求证(a^2+1)(b^2+1)(c^2+1)>8abc
已知a,b,c是不全相等的正数,求证:(ab+a+b+1)(ab+ac+bc+c^2)>16abc.
已知abc不全等的正数 求证b+c-a/a+c+a-b/b+a+b-c/c>3
已知a,b,c是不全相等的正数,求证:lga+lgb+lgc
已知a,b,c是不全相等的正数,求证(ab+a+b+1)(ab+ac+bc+c*c)大于16abc
已知 a,b,c是不全相等的正数.求证2(aaa+bbb+ccc)>aa(b+c)+bb(a+c)+cc(a+b)
1.证明题.已知a.b.c是不全相等的正数,求证 2(a3+b3+c3)>a2(a+b)+b2(a+c)+c2(a+b)