求下列极限的值:lim(1 /√ n^2+1+1 /√ n^2+2+…1 / √n^2+n).
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 07:50:52
求下列极限的值:lim(1 /√ n^2+1+1 /√ n^2+2+…1 / √n^2+n).
因为1/√(N^2+1)+1/√(N^2+2)+...+1/√(N^2+N
< 1/√N^2+1/√N^2+`...+1/√N^2 = 1
1/√(N^2+1)+1/√(N^2+2)+.+1/√(N^2+N)
> 1/√(N^2+N)+1/√(N^2+N)+...+1/√(N^2+N)
= N/(√N^2+N)
N无穷时,limN/(√N^2+N))=1
又根据两边夹定理,即可证明出1/√(N^2+1)+1/√(N^2+2)+`````+1/√(N^2+N)的极限等于1,N趋向无穷
< 1/√N^2+1/√N^2+`...+1/√N^2 = 1
1/√(N^2+1)+1/√(N^2+2)+.+1/√(N^2+N)
> 1/√(N^2+N)+1/√(N^2+N)+...+1/√(N^2+N)
= N/(√N^2+N)
N无穷时,limN/(√N^2+N))=1
又根据两边夹定理,即可证明出1/√(N^2+1)+1/√(N^2+2)+`````+1/√(N^2+N)的极限等于1,N趋向无穷
lim n〔√(n^2+1)-n〕当n→∞时的极限
lim(n→∞) ((2n!/n!*n)^1/n的极限用定积分求
求极限n~∞,lim(n+1)/2n
高数简单求极限lim[(3√n^2)*sin ]/(n+1) n--∞n的3/2次方乘以sin( n的阶乘) 除以 n+
求极限 lim n[1/(n^2+1)+1/(n^2+2^2)+……+1/(n^n+n^n)] (n趋向于无穷大,n^n
计算下列极限:(1)lim(√n+1-√n) (2)lim√n(√n+1-√n)
求下列极限 lim(n+1/n+2) lim(n∧2-1/2n∧2+1)
求极限lim [ 2^(n+1)+3^(n+1)]/2^n+3^n (n→∞)
求极限 lim(n->无穷)[(3n^2-2)/(3n^2+4)]^[n(n+1)]
lim n →∞ (1^n+3^n+2^n)^1/n,求数列极限
求极限lim(x→∞)(1/n+2/n+3/n..+n/n)
用数学极限的定义证明lim(n-∞)√(n^2+4)/n=1