求y=cos(x+根号x)的2阶导数.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/14 15:45:09
求y=cos(x+根号x)的2阶导数.
y是一个复合函数.
设:f(x)=x+√x
代入所给函数,有:y=cos[f(x)]
f'(x)=1-1/√x=1-x^(-1/2)=(x-√x)/x
f''(x)=(1/2)x^(3/2)=(1/2)√(x^3)
y'={-sin[f(x)]}×f'(x)
y''={-sin[f(x)]}'×f'(x)+{-sin[f(x)]}×f''(x)
={-cos[f(x)]}×[(x-√x)/x]-{sin[f(x)]}×[(1/2)√(x^3)]
=-[(x-√x)/x]×cos(x+√x)-[(1/2)√(x^3)]×sin(x+√x)
设:f(x)=x+√x
代入所给函数,有:y=cos[f(x)]
f'(x)=1-1/√x=1-x^(-1/2)=(x-√x)/x
f''(x)=(1/2)x^(3/2)=(1/2)√(x^3)
y'={-sin[f(x)]}×f'(x)
y''={-sin[f(x)]}'×f'(x)+{-sin[f(x)]}×f''(x)
={-cos[f(x)]}×[(x-√x)/x]-{sin[f(x)]}×[(1/2)√(x^3)]
=-[(x-√x)/x]×cos(x+√x)-[(1/2)√(x^3)]×sin(x+√x)