数列{an}的首项a1=1,前n项和为Sn,n>1时,3tSn-(2t+3)·S(n﹣1)=3t(t>0)恒成立.1.求
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/16 03:22:50
数列{an}的首项a1=1,前n项和为Sn,n>1时,3tSn-(2t+3)·S(n﹣1)=3t(t>0)恒成立.1.求证:数列{an}是等比数列.2.设数列{an}的公比为f(t),令b1=1,且n≥2时bn=f[1÷b(n﹣1)],求数列bn的通项公式.3.求和b1b2﹣b2b3+b3b4﹣…+b(2n﹣1)b(2n)﹣b(2n)b(2n+1).第三问可以不给过程.
解:(1)∵3t*Sn-(2t+ 3)S(n-1)=3t
∴3t*S(n-1)-(2t +3)S(n-2)=3t
两式相减:3tSn-(5t +3)S(n-1) (2t +3)S(n-2)=0
3t[Sn-S(n-1)]=(2t 3)[S(n-1)-S(n-2)]
∴an/a(n-1)=(2t +3)/3t
∴{an}是等比数列
(2)∵bn=3b(n-1)/2b(n-2) 3
∴两边求倒:1/bn=2/3 1/b(n-1)
∴{1/bn}为公差2/3的等差数列
∴bn=(2n +1)/3
(3)设Cn=bnb(n +1)=(2n +1)(2n +3)/9
再问: 谢谢哈。。
再答: 给个满意呗~*^_^*
∴3t*S(n-1)-(2t +3)S(n-2)=3t
两式相减:3tSn-(5t +3)S(n-1) (2t +3)S(n-2)=0
3t[Sn-S(n-1)]=(2t 3)[S(n-1)-S(n-2)]
∴an/a(n-1)=(2t +3)/3t
∴{an}是等比数列
(2)∵bn=3b(n-1)/2b(n-2) 3
∴两边求倒:1/bn=2/3 1/b(n-1)
∴{1/bn}为公差2/3的等差数列
∴bn=(2n +1)/3
(3)设Cn=bnb(n +1)=(2n +1)(2n +3)/9
再问: 谢谢哈。。
再答: 给个满意呗~*^_^*
设数列{An}的首项A1=1,前n项和Sn满足关系式:3tSn-(2t+3)Sn-1=3t(t>0,n为自然数n>=2)
设数列{an}的首项a1=1,前n项和Sn满足关系式.3tSn-(2t+3)Sn-1=3t(其中t>0,n=2,3,4,
设数列{an}的首项a1=1,前n项和Sn满足关系:3tSn-(2t+3)Sn-1=3t(t>0,n=2,3,4,5,)
数列{an}的首项a1=1,前n项和Sn满足关系:3tSn-(2t+3)Sn-1=3t(t>0,n=2,3,4,5,).
数列an的前n项和为Sn,a1=t,2a(n+1)=-3Sn+4 求a2,a3 t为何值an等比
设等差数列{an}的前n项和为Sn,若a1=2+t,S5-S2=24+3t(t>0) 求数列{an}的通项公式
已知数列{an}的首项a1=3,前n项和为Sn,且S(n+1)=3Sn+2n(n∈N)
数列{An}前n项和记为Sn,A1=t,An+1=2Sn+1(n属于正整数),当t为何值时,数列{An}是等比数列.
数列{an}的前n项和记为Sn,a1=t,an+1=2Sn+1(n∈N*).
高中数列 已知数列{an}的首项a1=1 前n项和为Sn 且S(n+1)=2Sn+3n+1
设等差数列(an)的前N项和为sn,若A1=2+T,S5-S2=24+3T,(T>0)求数列AN的通项公式
已知数列an的首项a1=5,前n项和为Sn,且S(n+1)=2Sn+n+5(n∈N*),求数列{an}的前n项和Sn,设