【解析几何求解】设椭圆c:x^2/a^2+y^2/b^2=1(a大于b大于0)过点m(根号2,1).
已知椭圆C:a平方分之x平方加b平方分之y平方等于1,a大于b大于0,过点(0,2)且离心率e等于二分之根号二 .求椭圆
已知椭圆C:A平方分之X平方+B平方之Y平方=1(A大于B大于0)的离心率为2分之根号3短轴端点到焦点的距离为2,已知点
设椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)过点M(根号2,1)且左焦点为F1(根号2,0)
设F1F2为椭圆x^2/a^2+y^2/b^2=1(a大于0,b大于0)的两焦点,
设椭圆C:x2/a2+y2/b2=1(a大于b大于c)过点(0,4),离心率为3/5 1:求C的方程 2 求过点(3,0
已知椭圆C:A平方分之X平方+B平方之Y平方=1(A大于B大于0)的离心率为2分之根号3短轴端点到焦点的距离为2,求椭圆
椭圆的方程,题目如下设椭圆C:a的平方分之x的平方+b的平方分之y的平方=1,a.b 都大于零且离心率为2/3倍根号2,
已知a大于b大于c大于1,设m=a-根号c,n=a-根号b,p=2((a+b)/2-根号ab),比较m,n,p的大小
设椭圆E:x^2/a^2+y^2/b^2=1过点M(2,根号2),N(根号6,1)两点,O为坐标原点
设椭圆E:x^2/a^2+y^2/b^2=1过点M(2,根号2),N(根号6,1)两点,O为原点坐标
圆锥曲线解析几何.已知椭圆方程x^2/a^2+y^2/b^2=1,A(m,0)为圆外一定点,过A作直线l交椭圆于P、Q两
设椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为e=根号2/2,点A是椭圆上的一点,且点A到椭圆c的