几道积分题,∫x2lnxdx ∫xcosx/2dx ∫arccosxdx ∫xe-xdx ∫lnx/√2dx 那个-x是
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 17:37:47
几道积分题,
∫x2lnxdx
∫xcosx/2dx
∫arccosxdx
∫xe-xdx
∫lnx/√2dx
那个-x是在e的上面的
∫x2lnxdx
中的2是平方的意思
∫x2lnxdx
∫xcosx/2dx
∫arccosxdx
∫xe-xdx
∫lnx/√2dx
那个-x是在e的上面的
∫x2lnxdx
中的2是平方的意思
∫x^2*lnxdx
=∫lnxd1/3(x^3)
=1/3*x^3*lnx-∫x^3/3dlnx
=1/3*x^3*lnx-∫x^3/3*(1/x)dx
=1/3*x^3*lnx-∫x^2/3dx
=1/3*x^3*lnx-x^3/9+c
∫xcos(x/2)dx
=∫xd(2sinx/2)
=2x*sin(x/2)-∫cos(x/2)dx
=2x*sin(x/2)-2sin(x/2)+c
∫arccosxdx
=x*arccosx-∫xdarccosx
=x*arccosx+∫x*1/(√(1+x^2))dx
=x*arccosx+∫1/(√(1+x^2))d(x^2)/2
=x*arccosx+1/√(1+x^2)*x^2/2-∫x/√(1+x^2)dx
=x*arccosx+x^2/(2*√(1+x^2))-(1/2)*√(1+x^2)+c
∫x^e-xdx
=∫x^edx-∫xdx
=*x^(e+1)/(e+1)-(x^2/2)+c
∫lnx/√2dx
=(√2/2)*∫lnxdx
=(√2/2)*(xlnx-∫xdlnx)
=(√2/2)*(xlnx-∫1dx)
=(√2/2)*(xlnx-x)+c
=∫lnxd1/3(x^3)
=1/3*x^3*lnx-∫x^3/3dlnx
=1/3*x^3*lnx-∫x^3/3*(1/x)dx
=1/3*x^3*lnx-∫x^2/3dx
=1/3*x^3*lnx-x^3/9+c
∫xcos(x/2)dx
=∫xd(2sinx/2)
=2x*sin(x/2)-∫cos(x/2)dx
=2x*sin(x/2)-2sin(x/2)+c
∫arccosxdx
=x*arccosx-∫xdarccosx
=x*arccosx+∫x*1/(√(1+x^2))dx
=x*arccosx+∫1/(√(1+x^2))d(x^2)/2
=x*arccosx+1/√(1+x^2)*x^2/2-∫x/√(1+x^2)dx
=x*arccosx+x^2/(2*√(1+x^2))-(1/2)*√(1+x^2)+c
∫x^e-xdx
=∫x^edx-∫xdx
=*x^(e+1)/(e+1)-(x^2/2)+c
∫lnx/√2dx
=(√2/2)*∫lnxdx
=(√2/2)*(xlnx-∫xdlnx)
=(√2/2)*(xlnx-∫1dx)
=(√2/2)*(xlnx-x)+c
求积分∫ [xe^(-ax)^2]dx
求定积分∫ xe^(x^4) dx,-π/2
∫xe^x^2 dx的积分是多少
积分问题 ∫xe^(-2x)dx,求解题过程
∫(0,+∞)xe^-xdx和∫(1,-1)dx/根号(1-x∧2),
1》求广义积分∫上限+∞下限0 xe^(-x^2) dx 2》求积分 ∫上限1下限0 lnx dx
高等数学微积分题目∫xe^(-2lnx) dx
∫[xe^x/(1+x)^2]dx
积分∫(f'(lnx)/(x√f(lnx)))dx=
求不定积分∫xe^2x*dx 求定积分∫(1,0)dx/2+√x
求定积分∫『上限是1下限是0』xe^(2x)dx
∫(1-lnx)/(x-lnx)^2dx