(1)1×2+2×3+3×4+…+10×11= 1 3 (1×2×3-0×1×2)+
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 01:43:14
(1)1×2+2×3+3×4+…+10×11
= 1 3 (1×2×3-0×1×2)+ 1 3 (2×3×4-1×2×3)+…+ 1 3 (10×11×12-9×10×11) = 1 3 ×10×11×12=440. (2)1×2×3+2×3×4+3×4×5+…+7×8×9 = 1 4 (1×2×3×4-0×1×2×3)+ 1 4 (2×3×4×5-1×2×3×4)+…+ 1 4 (7×8×9×10-6×7×8×9) = 1 4 ×7×8×9×10=1260. (3) 1 4 (n+1)(n+2)(n+3).
1/1+(1/1+2)+(1/1+2+3)……+(1/1+2+3+4+5+6+7+8+9+10+11)=
计算1+2/3+3/3^2+4/3^3+…+11/3^10
1/3+1/3^2+1/3^3+1/3^4+……+1/3^10=?
1/(1+2) + 1/(1+2+3) + 1/(1+2+3+4)……+1/(1+2+3+4+……+99+100)=(
1^3=1^2,1^3+2^3=3^2,1^3+2^3+3^3=6^2 1^3+2^3+3^3+4^3=10^2,…想想
根据1*2+2*3+3*4=1/3*3*4*5=20,计算下题1*2+2*3+3*4+……+10*11(写出过程)
1/1*2*3+1/2*3*4+1/3*4*5.+1/9*10*11=
(1-1/2^2)*(1-1/3)*(1-1/4^2)*…*(1-1/9^2)*(1/10^2)
1/2×1/3+1/3×1/4+1/4×1/5+……+1/9×1/10+1/10×1/11多少
(1/1+2)+(1/1+2+3)+(1/1+2+3+4)+………+(1/1+2+3+………+100)
计算:(1-1/2)*(1-1/3)*(1-1/4)*……*(1-1/10).
一道数学题.原式=1/(1*2)+1/(2*3)+1/(3*4)+……+1/(9*10)=1-1/2+1/2-1/3+1
|