作业帮 > 数学 > 作业

请问什么叫三维坐标系 是空间么?

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 19:30:36
请问什么叫三维坐标系 是空间么?
请问什么叫三维坐标系 是空间么?
1.三维笛卡尔坐标系
  三维笛卡尔坐标(X,Y,Z)是在三维笛卡尔坐标系下的点的表达式,其中,x,y,z分别是拥有共同的零点且彼此相互正交的x轴,y轴,z轴的坐标值.
2.圆柱坐标系
  圆柱坐标(ρ,θ,z)是圆柱坐标系上的点的表达式.设P(x,y,z)为空间内一点,则点P也可用这样三个有次序的数ρ,θ,z来确定,其中ρ为点P在xoy平面的投影M与原点的距离,θ为有向线段PO在xoy平面的投影MO与x轴正向所夹的角.圆柱坐标系和三维笛卡尔坐标系的点的坐标的对应关系是,x=ρcosθ,y=ρsinθ,z=z.
3.球面坐标系
  球面坐标系由到原点的距离、方位角、仰角三个维度构成. 球面坐标(ρ,θ,φ)是球面坐标系上的点的表达式.设P(x,y,z)为空间内一点,则点P也可用这样三个有次序的数r,φ,θ来确定,其中r为原点O与点P间的距离,θ为有向线段与z轴正向所夹的角,φ为从正z轴来看自x轴按逆时针方向转到有向线段的角,这里M为点P在xOy面上的投影.这样的三个数r,φ,θ叫做点P的球面坐标,这里r,φ,θ的变化范围为 r∈[0,+∞), φ∈[0, 2π], θ∈[0, π] . r = 常数,即以原点为心的球面; θ= 常数,即以原点为顶点、z轴为轴的圆锥面; φ= 常数,即过z轴的半平面. 其中 x=rsinθcosφ y=rsinθsinφ z=rcosθ