如图1,以△ABC的边AB,AC为直角边作等腰△ABE和△ACD,M是BC的中点.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/15 20:14:49
如图1,以△ABC的边AB,AC为直角边作等腰△ABE和△ACD,M是BC的中点.
(1)若∠BAC=90°,如图1.请你猜想线段DE,AM的数量关系,并证明你的结论;
(2)若∠BAC≠90°.
①如图2.请你猜想线段DE,AM的数量关系,并证明你的结论;
②如图3.请你判断线段DE,AM的数量关系.
(1)若∠BAC=90°,如图1.请你猜想线段DE,AM的数量关系,并证明你的结论;
(2)若∠BAC≠90°.
①如图2.请你猜想线段DE,AM的数量关系,并证明你的结论;
②如图3.请你判断线段DE,AM的数量关系.
(1)DE=2AM.
∵∠BAC=∠EAB=∠DAC=90°,
∴∠EAD=90°.
∵AB=AE,AC=AD,
∴△ABC≌△AED.
∵M是BC的中点,
∴BC=2AM.
∴DE=2AM.
(2)①DE=2AM.
延长AM到F,使得AM=MF.连接BF、CF.
如图.
∵AM=MF,BM=MC,
∴四边形ABFC是平行四边形.
∴AB=AE=FC.
∵∠BAE+∠CAD=180°,
∴∠BAC+∠EAD=180°.
∵∠BAC+∠ACF=180°,
∴∠EAD=∠ACF.
∵AC=AD,AE=FC,
∴△AFC≌△AED.
∴AF=DE.
∴DE=2AM.
②DE=2AM.
再问: 不用了,谢谢
∵∠BAC=∠EAB=∠DAC=90°,
∴∠EAD=90°.
∵AB=AE,AC=AD,
∴△ABC≌△AED.
∵M是BC的中点,
∴BC=2AM.
∴DE=2AM.
(2)①DE=2AM.
延长AM到F,使得AM=MF.连接BF、CF.
如图.
∵AM=MF,BM=MC,
∴四边形ABFC是平行四边形.
∴AB=AE=FC.
∵∠BAE+∠CAD=180°,
∴∠BAC+∠EAD=180°.
∵∠BAC+∠ACF=180°,
∴∠EAD=∠ACF.
∵AC=AD,AE=FC,
∴△AFC≌△AED.
∴AF=DE.
∴DE=2AM.
②DE=2AM.
再问: 不用了,谢谢
如图:以△ABC的边AB.AC为直角向外作等腰直角三角形ABE和三角形ACD,M是BC的中点,探
如图1.以三角形abc为边ab,ac为直角边向外作等腰直角三角形abe和三角形acd,m是bc
一道数学几何证明题三角形ABC是非直角三角形,以AB、AC为直角边向外作等腰直角三角形ABE和ACD,M是BC中点,证明
如图,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△
已知如图分别以三角形abc的边ab,ac为边,以a点为直角顶点,在三角形abc外部作等腰直角三角形abe和acd.
如图,分别以三角形abc的边ab、ac为直角边向三角形abc外部作等腰直角三角形abe和三角形acf,连接bf、ce.求
如图,已知△ABC中,以AB,AC为直角边,分别向外作等腰直角三角形ABE ACF,连结EF,过点A作AD⊥BC,垂足为
如图,以Rt△ABC的一直角边AB为直径作圆,交斜边BC于P点,Q为AC的中点.
如图,以△ABC的边AB,AC为直角边向外作等腰直角三角形ABD和等腰直角三角形ACE,O为DE的中点,OA的延长线交
已知如图,在△ABC中,以AB、AC为直角边,分别向外作等腰直角三角形△ABE、△ACF,连结EF,过点A作AD⊥BC
已知:如图12,在△ABC中,以AB AC为直角边,分别向外作等腰直角三角形ABE ACF,连结EF,过点A作AD⊥BC
已知:如图,在△ABC中,以AB AC为直角边,分别向外作等腰直角三角形ABE ACF,连结EF,过点A作AD⊥BC