调和平均数的应用?
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 19:23:01
调和平均数的应用?
算术平均数,arithmetic mean,用一组数的个数作除数去除这一组数的和所得出的平均值,也作average
几何平均数,geometric mean,作为n个因数乘积的数的n次方根,通常是n的正数根
设a1,a2,a3,...,an是n个正实数,则(a1+a2+a3+...+an)/n≥n次√(a1*a2*a3*...*an),当且仅当a1=a2=…=an时,均值不等式左右两边取等号
●【均值不等式的变形】
(1)对正实数a,b,有a^2+b^2≥2ab (当且仅当a=b时取“=”号),a^2+b^2>0>-2ab
(2)对非负实数a,b,有a+b≥2√(a*b)≥0,即(a+b)/2≥√(a*b)≥0
(3)对负实数a,b,有a+b<0<2√(a*b)
(4)对实数a,b(a≥b),有a(a-b)≥b(a-b)
(5)对非负数a,b,有a^2+b^2≥2ab≥0
(6)对非负数a,b,有a^2+b^2 ≥1/2*(a+b)^2≥ab
(7)对非负数a,b,c,有a^2+b^2+c^2≥1/3*(a+b+c)^2
(8)对非负数a,b,c,有a^2+b^2+c^2≥ab+bc+ac
(9)对非负数a,b,有a^2+ab+b^2≥3/4*(a+b)^2 2/(1/a+1/b)≤√ab≤a+b/2≤√((a^2+b^2)/2)
●【均值不等式的证明】
方法很多,数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序不等式法、柯西不等式法等等
下面介绍个好理解的方法
琴生不等式法
琴生不等式:上凸函数f(x),x1,x2,...xn是函数f(x)在区间(a,b)内的任意n个点,则有:f[(x1+x2+...+xn)/n]≥1/n*[f(x1)+f(x2)+...+f(xn)]
设f(x)=lnx,f(x)为上凸增函数 所以,ln[(x1+x2+...+xn)/n]≥1/n*[ln(x1)+ln(x2)+...+ln(xn)]=lnn次√(x1*x2*...*xn) 即(x1+x2+...+xn)/n≥n次√(x1*x2*...*xn)
●【均值不等式的应用】
例一 证明不等式:2√x≥3-1/x (x>0)
证明:2√x+1/x=√x+√x+1/x≥3*3次√(√x)*(√x)*(1/x)=3 所以,2√x≥3-1/x
例二 长方形的面积为p,求周长的最小值
设长,宽分别为a,b,则a*b=p 因为a+b≥2√ab,所以2(a+b)≥4√ab=4√p 周长最小值为4√p
例三 长方形的周长为p,求面积的最大值
设长,宽分别为a,b,则2(a+b)=p 因为a+b=p/2≥2√ab,所以ab≤p^2/16 面积最大值是p^2/16
●【均值不等式的总结】
1、调和平均数:Hn=n/(1/a1+1/a2+...+1/an)
2、几何平均数:Gn=(a1a2...an)^(1/n)=n次√(a1*a2*a3*...*an)
3、算术平均数:An=(a1+a2+...+an)/n
4、平方平均数:Qn=√ [(a1^2+a2^2+...+an^2)/n]
这四种平均数满足Hn≤Gn≤An≤Qn a1、a2、… 、an∈R +,当且仅当a1=a2= … =an时取“=”号
再问: 有应用的实例吗?
几何平均数,geometric mean,作为n个因数乘积的数的n次方根,通常是n的正数根
设a1,a2,a3,...,an是n个正实数,则(a1+a2+a3+...+an)/n≥n次√(a1*a2*a3*...*an),当且仅当a1=a2=…=an时,均值不等式左右两边取等号
●【均值不等式的变形】
(1)对正实数a,b,有a^2+b^2≥2ab (当且仅当a=b时取“=”号),a^2+b^2>0>-2ab
(2)对非负实数a,b,有a+b≥2√(a*b)≥0,即(a+b)/2≥√(a*b)≥0
(3)对负实数a,b,有a+b<0<2√(a*b)
(4)对实数a,b(a≥b),有a(a-b)≥b(a-b)
(5)对非负数a,b,有a^2+b^2≥2ab≥0
(6)对非负数a,b,有a^2+b^2 ≥1/2*(a+b)^2≥ab
(7)对非负数a,b,c,有a^2+b^2+c^2≥1/3*(a+b+c)^2
(8)对非负数a,b,c,有a^2+b^2+c^2≥ab+bc+ac
(9)对非负数a,b,有a^2+ab+b^2≥3/4*(a+b)^2 2/(1/a+1/b)≤√ab≤a+b/2≤√((a^2+b^2)/2)
●【均值不等式的证明】
方法很多,数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序不等式法、柯西不等式法等等
下面介绍个好理解的方法
琴生不等式法
琴生不等式:上凸函数f(x),x1,x2,...xn是函数f(x)在区间(a,b)内的任意n个点,则有:f[(x1+x2+...+xn)/n]≥1/n*[f(x1)+f(x2)+...+f(xn)]
设f(x)=lnx,f(x)为上凸增函数 所以,ln[(x1+x2+...+xn)/n]≥1/n*[ln(x1)+ln(x2)+...+ln(xn)]=lnn次√(x1*x2*...*xn) 即(x1+x2+...+xn)/n≥n次√(x1*x2*...*xn)
●【均值不等式的应用】
例一 证明不等式:2√x≥3-1/x (x>0)
证明:2√x+1/x=√x+√x+1/x≥3*3次√(√x)*(√x)*(1/x)=3 所以,2√x≥3-1/x
例二 长方形的面积为p,求周长的最小值
设长,宽分别为a,b,则a*b=p 因为a+b≥2√ab,所以2(a+b)≥4√ab=4√p 周长最小值为4√p
例三 长方形的周长为p,求面积的最大值
设长,宽分别为a,b,则2(a+b)=p 因为a+b=p/2≥2√ab,所以ab≤p^2/16 面积最大值是p^2/16
●【均值不等式的总结】
1、调和平均数:Hn=n/(1/a1+1/a2+...+1/an)
2、几何平均数:Gn=(a1a2...an)^(1/n)=n次√(a1*a2*a3*...*an)
3、算术平均数:An=(a1+a2+...+an)/n
4、平方平均数:Qn=√ [(a1^2+a2^2+...+an^2)/n]
这四种平均数满足Hn≤Gn≤An≤Qn a1、a2、… 、an∈R +,当且仅当a1=a2= … =an时取“=”号
再问: 有应用的实例吗?
我想知道简单算术平均数、加数算术平均数、加数调和平均数的计算公式及其应用条件,
调和平均数
几何平均数,算术平均数,调和平均数,平方平均数的大小关系
求证几何平均数、加权平均数、算术平均数、调和平均数的大小关系
简单调和平均数公式加权调和平均数公式众数,中位数的典型计算
求证调和平均数
调和平均数、几何平均数、算术平均数、平方平均数的实际运用上的区别与意义
求统计学原理,简单算平均数,加数算术平均数,加数调和平均数的计算公式!
加权算术平均数和加权调和平均数的区别和联系
如何使用spss20.0计算变量的算术平均数、中位数、众数、几何平均数、调和平均数
算术平均数、几何平均数、调和平均数、和平方平均的大小关系
调和平均数 ≤ 几何平均数 ≤ 算术平均数 ≤ 平方平均数