在数1和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记作Tn,再令an=lgTn.n
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 08:31:45
在数1和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记作Tn,再令an=lgTn.n≥1.
已知an=n+2
设bn=tananxtanan+1(n+1)为下标,求数列{bn}的前几项和sn.在线一小时,请知道的速指导下.
已知an=n+2
设bn=tananxtanan+1(n+1)为下标,求数列{bn}的前几项和sn.在线一小时,请知道的速指导下.
你已经说你知道,
an=n+2
我就不证明了.
首先,有tan的公式
tan(A-B)=[tan(A)-tan(B)] / [1+tan(A) * tan(B)]
所以,
tan(A) * tan(B)
= -1+[tan(A)-tan(B)] / tan(A-B)
下面,
bn=tanan * tana(n+1)
=tan(n+2) * tan(n+3)
= -1+[tan(n+2) - tan(n+3)] / tan[(n+2)-(n+3)]
= -1+[tan(n+2) - tan(n+3)] / tan(-1) 【tan(-1)为常数】
所以,{bn}的和Sn满足
Sn=b1+b2+b3+……+bn
= -n + [tan(3)-tan(4)+tan(4)-tan(5)+……+tan(n+2) - tan(n+3)] / tan(-1)
= -n + [tan(3)-tan(n+3)] / tan(-1)
再问: tan(-1)等于多少啊???不好意思问这种低级问题!!!
an=n+2
我就不证明了.
首先,有tan的公式
tan(A-B)=[tan(A)-tan(B)] / [1+tan(A) * tan(B)]
所以,
tan(A) * tan(B)
= -1+[tan(A)-tan(B)] / tan(A-B)
下面,
bn=tanan * tana(n+1)
=tan(n+2) * tan(n+3)
= -1+[tan(n+2) - tan(n+3)] / tan[(n+2)-(n+3)]
= -1+[tan(n+2) - tan(n+3)] / tan(-1) 【tan(-1)为常数】
所以,{bn}的和Sn满足
Sn=b1+b2+b3+……+bn
= -n + [tan(3)-tan(4)+tan(4)-tan(5)+……+tan(n+2) - tan(n+3)] / tan(-1)
= -n + [tan(3)-tan(n+3)] / tan(-1)
再问: tan(-1)等于多少啊???不好意思问这种低级问题!!!
在数l和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记作Tn,再令an=lgTn,n
数学等比数列难题一道 在数1和4之间插入n个实数,使得(n+2)个数构成递增的等比数列,将这(n+2)个数乘积记作Tn,
在数1和100之间插入n个实数,使得构成等比数列,求这n个数的积n
在数1和100之间插入个实数,使得这个数构成递增的等比数列,将这个数的乘积记作,再令。 (1)求数列的通项公式; (2)
在1和100之间插入n个正数,使这(n+2)个数成等比数列,则插入的这n个数的积为
在1/n与n+1之间插入n个正数,使这n+2个数成等差数列,各插入之数的乘积为Bn
在1与100之间插入n个正数,使这n+2个数成等比数列,则插入的n个数的积为多少
在1和100之间插入n个正数,使这(n+2)个数成等比数列,则插入的这n个数的积为 麻烦把步骤写全
在1,2之间插入n个正数a1,a2,…,an,使这n+2个数成等比数列,则a1a2a3…an= ___ .
在n*n的棋盘上填入1,2,3,4.n*n,共有n*n个数,使得任意两个相邻数的和为素数
在1与2之间插入n个正数a1,a2,a3,…,an,使这n+2个数成等比数列;又在1与2间插入n个正数b1,b2,b3,
1.在1和2之间插入n个正数,使这n+2个正数依次成等比数列,则插入的n个正数之积为?