一元二次不等式知识点
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 12:55:30
一元二次不等式知识点
★ 知 识 梳理 ★
一.解不等式的有关理论
(1) 若两个不等式的解集相同,则称它们是同解不等式;
(2) 一个不等式变形为另一个不等式时,若两个不等式是同解不等式,这种变形称为不等式的同解变形;
(3) 解不等式时应进行同解变形;
(4) 解不等式的结果,原则上要用集合表示.
二.一元二次不等式的解集
二次函数
( )的图象
一元二次方程
有两相异实根
有两相等实根
无实根
R
三.解一元二次不等式的基本步骤:
(1) 整理系数,使最高次项的系数为正数;
(2) 尝试用“十字相乘法”分解因式;
(3) 计算
(4) 结合二次函数的图象特征写出解集.
四.高次不等式解法:
尽可能进行因式分解,分解成一次因式后,再利用数轴标根法求解
(注意每个因式的最高次项的系数要求为正数)
五.分式不等式的解法:
分子分母因式分解,转化为相异一次因式的积和商的形式,再利用数轴标根法求解;
★ 重 难 点 突 破 ★
1.重点:从实际情境中抽象出一元二次不等式模型;熟练掌握一元二次不等式的解法.
2.难点:理解二次函数、一元二次方程与一元二次不等式解集的关系.求解简单的分式不等式和高次不等式以及简单的含参数的不等式
3.重难点:掌握一元二次不等式的解法,利用不等式的性质解简单的简单的分式不等式和高次不等式以及简单的含参数的不等式, 会解简单的指数不等式和对数不等式.
(1)解简单的指数不等式和对数不等式关键在于通过同解变形转化为一般的不等式(组)来求解
莲山课件 原文地址:http://www.5ykj.com/shti/gaosan/86941.htm
一.解不等式的有关理论
(1) 若两个不等式的解集相同,则称它们是同解不等式;
(2) 一个不等式变形为另一个不等式时,若两个不等式是同解不等式,这种变形称为不等式的同解变形;
(3) 解不等式时应进行同解变形;
(4) 解不等式的结果,原则上要用集合表示.
二.一元二次不等式的解集
二次函数
( )的图象
一元二次方程
有两相异实根
有两相等实根
无实根
R
三.解一元二次不等式的基本步骤:
(1) 整理系数,使最高次项的系数为正数;
(2) 尝试用“十字相乘法”分解因式;
(3) 计算
(4) 结合二次函数的图象特征写出解集.
四.高次不等式解法:
尽可能进行因式分解,分解成一次因式后,再利用数轴标根法求解
(注意每个因式的最高次项的系数要求为正数)
五.分式不等式的解法:
分子分母因式分解,转化为相异一次因式的积和商的形式,再利用数轴标根法求解;
★ 重 难 点 突 破 ★
1.重点:从实际情境中抽象出一元二次不等式模型;熟练掌握一元二次不等式的解法.
2.难点:理解二次函数、一元二次方程与一元二次不等式解集的关系.求解简单的分式不等式和高次不等式以及简单的含参数的不等式
3.重难点:掌握一元二次不等式的解法,利用不等式的性质解简单的简单的分式不等式和高次不等式以及简单的含参数的不等式, 会解简单的指数不等式和对数不等式.
(1)解简单的指数不等式和对数不等式关键在于通过同解变形转化为一般的不等式(组)来求解
莲山课件 原文地址:http://www.5ykj.com/shti/gaosan/86941.htm