=ax2+bx+c(a0)的图像过点(0,1),顶点为Q(2,3),点D在轴正半轴上,且线段OD
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 11:14:07
=ax2+bx+c(a0)的图像过点(0,1),顶点为Q(2,3),点D在轴正半轴上,且线段OD
OC
OC
抛物线Y=ax2+bx+c的图像过点C(0,1),顶点为Q(2,3),点D在X轴正半轴上,且OD=OC
1)∵C(0,1),OD=OC,∴D点坐标为(1,0).
设直线CD的解析式为y=kx+b(k≠0),
将C(0,1),D(1,0)代入得:
1=b
k+b=0
,
解得:b=1,k=-1,
∴直线CD的解析式为:y=-x+1.
(2)设抛物线的解析式为y=a(x-2)2+3,
将C(0,1)代入得:1=a×(-2)2+3,解得a=−
1
2
.
∴y=−
1
2
(x-2)2+3=−
1
2
x2+2x+1.
(3)证明:由题意可知,∠ECD=45°,
∵OC=OD,且OC⊥OD,∴△OCD为等腰直角三角形,∠ODC=45°,
∴∠ECD=∠ODC,∴CE∥x轴,则点C、E关于对称轴(直线x=2)对称,
∴点E的坐标为(4,1).
如答图①所示,设对称轴(直线x=2)与CE交于点M,则M(2,1),
∴ME=CM=QM=2,∴△QME与△QMC均为等腰直角三角形,∴∠QEC=∠QCE=45°.
又∵△OCD为等腰直角三角形,∴∠ODC=∠OCD=45°,
∴∠QEC=∠QCE=∠ODC=∠OCD=45°,
∴△CEQ∽△CDO.
(4)存在.
如答图②所示,作点C关于直线QE的对称点C′,作点C关于x轴的对称点C″,连接C′C″,交OD于点F,交QE于点P,则△PCF即为符合题意的周长最小的三角形,由轴对称的性质可知,△PCF的周长等于线段C′C″的长度.
(证明如下:不妨在线段OD上取异于点F的任一点F′,在线段QE上取异于点P的任一点P′,连接F′C″,F′P′,P′C′.
由轴对称的性质可知,△P′CF′的周长=F′C″+F′P′+P′C′;
而F′C″+F′P′+P′C′是点C′,C″之间的折线段,
由两点之间线段最短可知:F′C″+F′P′+P′C′>C′C″,
即△P′CF′的周长大于△PCE的周长.)
如答图③所示,连接C′E,
∵C,C′关于直线QE对称,△QCE为等腰直角三角形,
∴△QC′E为等腰直角三角形,
∴△CEC′为等腰直角三角形,
∴点C′的坐标为(4,5);
∵C,C″关于x轴对称,∴点C″的坐标为(0,-1).
过点C′作C′N⊥y轴于点N,则NC′=4,NC″=4+1+1=6,
在Rt△C′NC″中,由勾股定理得:C′C″=
NC′2+NC″2
=
42+62=2
13
.
综上所述,在P点和F点移动过程中,△PCF的周长存在最小值,最小值为2
13
1)∵C(0,1),OD=OC,∴D点坐标为(1,0).
设直线CD的解析式为y=kx+b(k≠0),
将C(0,1),D(1,0)代入得:
1=b
k+b=0
,
解得:b=1,k=-1,
∴直线CD的解析式为:y=-x+1.
(2)设抛物线的解析式为y=a(x-2)2+3,
将C(0,1)代入得:1=a×(-2)2+3,解得a=−
1
2
.
∴y=−
1
2
(x-2)2+3=−
1
2
x2+2x+1.
(3)证明:由题意可知,∠ECD=45°,
∵OC=OD,且OC⊥OD,∴△OCD为等腰直角三角形,∠ODC=45°,
∴∠ECD=∠ODC,∴CE∥x轴,则点C、E关于对称轴(直线x=2)对称,
∴点E的坐标为(4,1).
如答图①所示,设对称轴(直线x=2)与CE交于点M,则M(2,1),
∴ME=CM=QM=2,∴△QME与△QMC均为等腰直角三角形,∴∠QEC=∠QCE=45°.
又∵△OCD为等腰直角三角形,∴∠ODC=∠OCD=45°,
∴∠QEC=∠QCE=∠ODC=∠OCD=45°,
∴△CEQ∽△CDO.
(4)存在.
如答图②所示,作点C关于直线QE的对称点C′,作点C关于x轴的对称点C″,连接C′C″,交OD于点F,交QE于点P,则△PCF即为符合题意的周长最小的三角形,由轴对称的性质可知,△PCF的周长等于线段C′C″的长度.
(证明如下:不妨在线段OD上取异于点F的任一点F′,在线段QE上取异于点P的任一点P′,连接F′C″,F′P′,P′C′.
由轴对称的性质可知,△P′CF′的周长=F′C″+F′P′+P′C′;
而F′C″+F′P′+P′C′是点C′,C″之间的折线段,
由两点之间线段最短可知:F′C″+F′P′+P′C′>C′C″,
即△P′CF′的周长大于△PCE的周长.)
如答图③所示,连接C′E,
∵C,C′关于直线QE对称,△QCE为等腰直角三角形,
∴△QC′E为等腰直角三角形,
∴△CEC′为等腰直角三角形,
∴点C′的坐标为(4,5);
∵C,C″关于x轴对称,∴点C″的坐标为(0,-1).
过点C′作C′N⊥y轴于点N,则NC′=4,NC″=4+1+1=6,
在Rt△C′NC″中,由勾股定理得:C′C″=
NC′2+NC″2
=
42+62=2
13
.
综上所述,在P点和F点移动过程中,△PCF的周长存在最小值,最小值为2
13
已知二次函数Y=ax2+bx+c图像的顶点坐标为(-2,4),且过点(-3,0),求a,b,c的值
如图,已知二次函数y=ax2+bx+c的图像的顶点为m(2,1),且过点n(3,2)
已知二次函数y=ax2+bx+c的图像顶点坐标为(-2,1)且过点(-1.2)求abc
2013十堰,如图二次函数y=ax2+bx+c的图像顶点在第一象限,且过点(0,1)和(-1,0)  
已知二次函数y=ax2+bx图像的顶点在直线y=-1/2x-1上,且过点A(4,0).
已知抛物线y=ax^2+bx+c的图像顶点坐标为【-2,3】,且过点(-1,5),
已知二次函数y=ax2+bx+c的图像的顶点为(-1,-9/2),且经过点(-2,0),求该二次函数的函数关系式
已知抛物线y=ax2+bx+c的对称轴是x=1,在x轴上截得的线段长为4,并且过点C(-1,2)的直线交于点D(2,-3
抛物线y=ax2+bx+c的顶点为(3,-2),且在x轴截出的线段长为4,
抛物线y=ax2+bx+c交x轴于点A(-1,0)B(3,0),交y轴于点C顶点为D以BD为直径的圆M恰好过点C
已知二次函数Y=aX2+bx+c(a≠0)的图像顶点在第二象限,且经过点A(2,0)和B(0,2),
如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两