作业帮 > 数学 > 作业

【数学题求助】△ABC中,AC=BC,在△DEC中,CD=CE,且∠DCE=∠ACB,AD与BE交于点P.求证:CP平分

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 02:58:10
【数学题求助】△ABC中,AC=BC,在△DEC中,CD=CE,且∠DCE=∠ACB,AD与BE交于点P.求证:CP平分∠BPD
△ABC中,AC=BC,在△DEC中,CD=CE,且∠DCE=∠ACB,AD与BE交于点P. 求证:CP平分∠BPD.

图片如下:
【数学题求助】△ABC中,AC=BC,在△DEC中,CD=CE,且∠DCE=∠ACB,AD与BE交于点P.求证:CP平分
因为∠DCE=∠ACB
所以∠BCE=∠ACD
因为CD=CE ,AC=BC
所以△ACD全等△BCE
所以∠CBM=∠CAP
因为∠BMC=∠AMP
所以△BMC相似△AMP
所以AM比BM=PM比MC
因为∠AMB=∠PMC
所以△AMB相似△PMC
所以∠BAM=∠MPC
同理可得∠CPN=∠DEN
因为AC=BC,CD=CE,∠DCE=∠ACB
所以∠BAC=∠CED
所以∠MPC=∠NPC
所以CP平分∠BPD.