作业帮 > 数学 > 作业

f(x)=ax^2+bx+3a+b是偶函数,且其定义域为[a-1,2a],则a=__,b=__

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/16 05:06:12
f(x)=ax^2+bx+3a+b是偶函数,且其定义域为[a-1,2a],则a=__,b=__
f(x)=ax^2+bx+3a+b是偶函数,且其定义域为[a-1,2a],则a=__,b=__
f(x)=ax^2+bx+3a+b是偶函数,且其定义域为[a-1,2a],则a=__,b=__
f(-x)=ax^2+(-bx)+3a+b=f(x)=ax^2+bx+3a+b
所以:-bx=bx,得:b=0
定义域为[a-1,2a],则 有:a-1+2a=0,得a=1/3.(偶函数定义域关于原点对称)
综上所述:a=1/3,b=0