如图:已知⊙O1和⊙O2相交于A、B两点,P是⊙O1上一点,PB的延长线交⊙O2于点C,PA交⊙O2于点D,CD的延长线
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 00:34:00
如图:已知⊙O1和⊙O2相交于A、B两点,P是⊙O1上一点,PB的延长线交⊙O2于点C,PA交⊙O2于点D,CD的延长线交⊙O1于点N.
(1)过点A作AE∥CN交⊙O1于点E,求证:PA=PE;
(2)连接PN,若PB=4,BC=2,求PN的长.
(1)过点A作AE∥CN交⊙O1于点E,求证:PA=PE;
(2)连接PN,若PB=4,BC=2,求PN的长.
(1)证明:连接AB.
∵四边形AEPB是⊙O1的内接四边形,
∴∠ABC=∠E.
在⊙O2中,∠ABC=∠ADC,
∴∠ADC=∠E.
又∵AE∥CN,
∴∠ADC=∠PAE.
故∠PAE=∠E.
∴PA=PE.
(2)连接AN、PN.
∵四边形ANPB是⊙O1的内接四边形,
∴∠ABC=∠PNA.
由(1)可知,∠PDN=∠ADC=∠ABC.
∴∠PDN=∠PNA.
又∠DPN=∠NPA,
∴△PDN∽△PNA.
∴PN2=PD•PA.
又∵PD•PA=PB•PC,
∴PN=
PB•PC=
4×(4+2)=2
6.
∵四边形AEPB是⊙O1的内接四边形,
∴∠ABC=∠E.
在⊙O2中,∠ABC=∠ADC,
∴∠ADC=∠E.
又∵AE∥CN,
∴∠ADC=∠PAE.
故∠PAE=∠E.
∴PA=PE.
(2)连接AN、PN.
∵四边形ANPB是⊙O1的内接四边形,
∴∠ABC=∠PNA.
由(1)可知,∠PDN=∠ADC=∠ABC.
∴∠PDN=∠PNA.
又∠DPN=∠NPA,
∴△PDN∽△PNA.
∴PN2=PD•PA.
又∵PD•PA=PB•PC,
∴PN=
PB•PC=
4×(4+2)=2
6.
如图 已知O1和O2相交于A、B两点,P是O1上的一点,PB延长线交O2于C,PA交O2于D,CD延长线交O1于N.
⊙O1与⊙O2相交于A,B,⊙O2的圆心在⊙O1上,P为⊙O1上一点,PA的延长线交⊙O2于D点,PB交⊙O2于C点
已知:如图⊙O1与⊙O2相交于A、B,P是⊙O1上一点,连接PA、PB并延长,分别交⊙O2于C、D,点E是CD上的任意一
已知圆O1与圆O2相交于A,B 圆O2的圆心在圆O1上 P为圆O1上一点 PA的延长线交圆O2于D点 PB交圆O2于C点
已知圆O1,圆O2相交于AB两点,P为圆O1上一点,PB延长线交圆O2于C,PA交圆O2于点D,CD延长线交圆O1于点N
已知P、O2是圆,⊙O1上两点,圆,⊙O1与⊙O2都经过A、B两点,PA的延长线和PB分别交于⊙O2于C、D.试说明(1
如图,⊙O1与⊙O2交于A,B两点,P是⊙O1上的点,连结PA,PB交⊙O2于C,D,求证:CPO1⊥CD
如图,已知⊙O1与⊙O2相交于A、B两点,C、A、D三点在一条直线上,CD的延长线交O1O2的延长线于P,∠P=30°,
如图.⊙O1和⊙O2都经过A、B两点,圆心O1在⊙O2上,⊙O2的直径AC交⊙O1于点D,CB延长线交⊙O1于E.求证:
已知:如图,⊙O1与⊙O2相交于A、B两点,O1在⊙O2上,⊙O2的弦BC切⊙O1于B,延长BO1、CA交于点P、PB与
如图,已知⊙O1与⊙O2外离,O1O2的延长线交⊙O2于C,直线CD交⊙O1于D,交⊙O2于A,直线CE交⊙O2于B,如
如图,已知⊙O1和⊙O2相交于A,B两点,过点A作⊙O1的切线交⊙O2于点C,直线CB交⊙O1于点D,