如图,在矩形ABCD中,AB=3,BC=2,点A的坐标为(1,0),以CD为直径,在矩形ABCD内作半圆,点M为圆心.设
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/16 07:57:18
如图,在矩形ABCD中,AB=3,BC=2,点A的坐标为(1,0),以CD为直径,在矩形ABCD内作半圆,点M为圆心.设过A,B两点抛物线的解析式为y=ax平方+bx+c,顶点为点N
1.求过A,C两点直线的解析式;
2.当点N在半圆M内时,求a的取值范围;
3.过点A作圆M的切线交BC于点F,E为切点,当以点A,F,B为顶点的三角形与以C,N,M为顶点的三角形相似时,求点N的坐标.
1.求过A,C两点直线的解析式;
2.当点N在半圆M内时,求a的取值范围;
3.过点A作圆M的切线交BC于点F,E为切点,当以点A,F,B为顶点的三角形与以C,N,M为顶点的三角形相似时,求点N的坐标.
(1)因为在矩形ABCD中,AB=3,BC=2,点A的坐标为(1,0),
所以B(4,0),C(4,2),
设过A,C两点的直线解析式为y=kx+b,
把A,C两点代入得k+b=04k+b=2,
解得k=
23b=-
23,
故过点A、C的直线的解析式为y=23x-23.
(2)由抛物线过A,B两点,可设抛物线的解析式为y=a(x-1)(x-4),
整理得,y=ax2-5ax+4a.
∴顶点N的坐标为(52,-9a4).
由抛物线、半圆的轴对称可知,抛物线的顶点在过点M且与CD垂直的直线上,又点N在半圆内,
12<-9a4<2,
解这个不等式,得-89<a<-29.
(3)设EF=x,则CF=x,BF=2-x,AF=2+x,AB=3,
在Rt△ABF中,由勾股定理AB2+BF2=AF2,
得x=98,BF=78,
①由△ABF∽△CMN得,ABCM=BFMN,即MN=BF•CMAB=716.
当点N在CD的下方时,由-9a4=2-716=2516,求得N1(52,2516).
当点N在CD的上方时,由-9a4=2+716=3916,求得N 2(52,3916).
②由△ABF∽△NMC得,ABNM=BFMC即MN=AB•CMBF=367.
当点N在CD的下方时,由-9a4=2-367=-227,求得N3(52,-
227).
当点N在CD的上方时,由-9a4=2+367=507,求得N4(52,507).
所以B(4,0),C(4,2),
设过A,C两点的直线解析式为y=kx+b,
把A,C两点代入得k+b=04k+b=2,
解得k=
23b=-
23,
故过点A、C的直线的解析式为y=23x-23.
(2)由抛物线过A,B两点,可设抛物线的解析式为y=a(x-1)(x-4),
整理得,y=ax2-5ax+4a.
∴顶点N的坐标为(52,-9a4).
由抛物线、半圆的轴对称可知,抛物线的顶点在过点M且与CD垂直的直线上,又点N在半圆内,
12<-9a4<2,
解这个不等式,得-89<a<-29.
(3)设EF=x,则CF=x,BF=2-x,AF=2+x,AB=3,
在Rt△ABF中,由勾股定理AB2+BF2=AF2,
得x=98,BF=78,
①由△ABF∽△CMN得,ABCM=BFMN,即MN=BF•CMAB=716.
当点N在CD的下方时,由-9a4=2-716=2516,求得N1(52,2516).
当点N在CD的上方时,由-9a4=2+716=3916,求得N 2(52,3916).
②由△ABF∽△NMC得,ABNM=BFMC即MN=AB•CMBF=367.
当点N在CD的下方时,由-9a4=2-367=-227,求得N3(52,-
227).
当点N在CD的上方时,由-9a4=2+367=507,求得N4(52,507).
图,在矩形ABCD中,AB=3,BC=2,以BC为直径在矩形内作半圆,自点A作半圆的切线AE,则sin∠CBE=( )
如图,在矩形ABCD中,AB=3,AD=4,以AD为直径作半圆,M为BC上的一动点,可与B,C重合,AM
如图,矩形ABCD,AB=3,AD=4,以AD为直径作半圆,M为BC上一动点,可与B,C重合,AM交半圆于N,设AM=x
如图矩形ABCD,AB=3,AD=4以AD为直径的半圆,M为BC上一动点可与BC重合AM交半圆于N设AM=X,DN=Y求
如图,在矩形ABCD中,AB=a,BC=b,点E在AB上,且AE=c,以E为圆心,以AE为半径画弧,交CD于点F;
如图,在矩形ABCD中,AB=2DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD的延长线于点F,设DA=2.&n
已知:如图,在矩形ABCD中,AB=2,BC=1,P为矩形ABCD的边上的一个动点,它从点A出发,沿A、B、C运动,若设
已知:如图,在矩形ABCD中,AB=2,BC=1,P为矩形ABCD的边上的一个动点,它从点A出发,沿A到B到C运动,诺设
如图在矩形ABCD中AB:BC=3:5以点B为圆心BC的长为半径画弧交AD于点E若AE×ED=4则矩形ABCD的面积为
一道数学题.初四的、在矩形ABCD中,AD=xcm,CD=3m,以AD,BC为直径在矩形外侧分别作两个半圆,设图中阴影部
如图,已知矩形ABCD中,AB=3,AD=4,(1)以点A为圆心,4为半径作圆A,则点C与圆A的位置关系是?(1)若以A
图,在矩形ABCD中,BC=4,以BC为直径作半圆O与AD相切.