作业帮 > 数学 > 作业

已知sinx=asiny,tanx=btany,x为钝角,求证cosx=根号((a^2-1)/(b^2-1))

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 03:00:10
已知sinx=asiny,tanx=btany,x为钝角,求证cosx=根号((a^2-1)/(b^2-1))
已知sinx=asiny,tanx=btany,x为钝角,求证cosx=根号((a^2-1)/(b^2-1))
sinx=asiny,tanx=sinx/cosx=btany 则cosx=acosy/b 则(siny)^2+(cosy)^2=1/a^2(sinx)^2+(b/acosx)^2=1/a^2(1-(cosx)^2)+b^2/a^2*(cosx)^2 即1=[1+(b^2-1)(cosx)^2]/a^2 则(cosx)^2=(a^2-1)/(b^2-1) 则cosx=√(a^2-1)/(b^2-1)
希望采纳