数列{an}的通项公式为an=(n+1)×0.9^n,是否存在这样的正整数N,使得对于任意的正整数n,有an≤aN成立?
数列{an}的通项公式为an=(n+1)×0.9n,是否存在这样的正整数N
数列an的通项公式an=(n+1)*0.9^n是否存在着项的自然数N,使得对于任意自然数n都有an
数列an的前n项和为sn,存在常数A,B,C使得an+sn=An^2+Bn+C对任意正整数n都成立.
设数列{an}的前n 项和为Sn,对于任意的正整数n,都有an=5Sn+1成立,求数列{an}的通项公式
设数列an的前n项和为Sn,a1=1,an=Sn/n+2(n-1) (1)求an的通项公式(2)是否存在正整数n,使得S
数列{an}的前n项和为Sn,存在常数ABC,使得an+Sn=An^2+Bn+C对任意正整数都成立
设数列{an}的前n 项和为Sn,对于任意的正整数n,都有an=5Sn+1成立,设bn=(4+an)/(1-an)(n∈
对于数列{an},如果存在最小的一个常数T(T∈N*),使得对任意的正整数恒有an+T=an成立,则称数列{an}是周期
已知数列{an}的通项公式为an=1/(n+1),前n项和为Sn,若对于任意正整数n,不等式S2n-Sn>m/16恒成立
已知数列{an}中,a1=1,且对于任意的正整数m,n都有am+n=aman+am+an,则数列{an}的通项公式为__
设数列an的前n项和为sn,对任意的正整数n,都有an=5sn+1成立,记bn=(4+an)/(1-an)(n是正整数)
数列{an}的前n项和为Sn,对任意的正整数n,都有an=5Sn+1成立,记bn=(4+an)/(1-an)(n是正整数