数列an中,a1=1,a(n+1)=(an+2)/an,且bn=(an-2)/(an+1),(1)证明bn是等比数列;(
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 09:35:47
数列an中,a1=1,a(n+1)=(an+2)/an,且bn=(an-2)/(an+1),(1)证明bn是等比数列;(2)求bn的Sn,及limSn
1)b(n+1)=[a(n+1)-2]/[a(n+1)+1]
=[(an+2)/an-2]/[(an+2)/an+1]
=[an+2-2an]/[an+2+an]
=(2-an)/(2+2an)
=-1/2*(an-2)/(an+1)
=-1/2*bn,
所以,{bn}是首项为 (a1-2)/(a1+1)=(1-2)/(1+1)=-1/2,公比为-1/2的等比数列.
2)由1)知,bn=(-1/2)^n,
所以,Sn=(-1/2)*[1-(-1/2)^n]/(1+1/2)=-1/3*[1-(-1/2)^n]
因此,lim(n→∞)Sn=-1/3.
=[(an+2)/an-2]/[(an+2)/an+1]
=[an+2-2an]/[an+2+an]
=(2-an)/(2+2an)
=-1/2*(an-2)/(an+1)
=-1/2*bn,
所以,{bn}是首项为 (a1-2)/(a1+1)=(1-2)/(1+1)=-1/2,公比为-1/2的等比数列.
2)由1)知,bn=(-1/2)^n,
所以,Sn=(-1/2)*[1-(-1/2)^n]/(1+1/2)=-1/3*[1-(-1/2)^n]
因此,lim(n→∞)Sn=-1/3.
数列an中,a1=3,an=(3an-1-2)/an-1,数列bn满足bn=an-2/1-an,证明bn是等比数列 2.
在数列{an},{bn}中,a1=2,b1=4且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈
在数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n
已知数列{an}中,a1=2,an+1=4an-2/3an-1 bn=3an-2/an-1 求证;数列{bn}是等比数列
在数列{an}中,a1=1,an+1=[(n+1)/n]*an+2(n+1),设bn=an/n,(1)证明数列{bn}是
已知数列an中,a(n+1)=an/an+1 已知a1=2,bn=1/an,用定义法证明bn是等差数列
a1=1,a2=2,an+2=(an+an-1)/2,n∈N+,(1)令bn=an+1-an,证明bn是等比数列
数列{an}中,a1=1,Sn+1=4an+2设bn=an+1-2an,求证{bn}是等比数列,并求{an}通项.
数列{an}和{bn}中,a1=1,a2=2,an>0,bn=根号(an*a(n+1))(n为正整数),且{bn}是以q
在数列{an}中,已知a1=-1,an+a(n+1)+4n+2=0 (1)求bn=an+2n,求证:{bn}为等比数列
已知数列{an}满足a1=1,a2=2,an+2=(an+an+1)/2,n∈N*.令bn=an+1-an,证明{bn}
数列{an}中,a1=1,且a(n+1)=2an+1.设bn=an+1