作业帮 > 数学 > 作业

数列{An}中A1=4,An=4-4/A(n-1)[n≥2],令Bn=1/(An-2).

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 09:41:31
数列{An}中A1=4,An=4-4/A(n-1)[n≥2],令Bn=1/(An-2).
1.求证:数列{Bn}是等差数列;
2.求数列{An}的通向公式
数列{An}中A1=4,An=4-4/A(n-1)[n≥2],令Bn=1/(An-2).
1:bn-b(n-1)=1/(2-4/(an-1))-1/(a(n-1)-2)
=a(n-1)/(2a(n-1)-4)-2/(2a(n-1)-4)
=(a(n-1)-2)/(2a(n-1)-4)=1/2,
所以数列{bn}是以b1=1/2为首项,公差为1/2的等差数列.
2:an=4-(4/a(n-1)),
an-2=2-4/a(n-1) =[2a(n-1)-4]/a(n-1)
两边取倒数得到
1/(an-2)=a(n-1)/[2a(n-1)-4]=1/2+1/[a(n-1)-2]
然后采用逐级消除法
依次将n=n-1,n-2……2 带入
然后所有等式相加
1/(an-2)-1/[a(n-1)-2]=1/21/(a(n-1)-2)-1/[a(n-2)-2]=1/2……1/(a2-2)-1/(a1-2)=1/2
左边消去很多项 得
1/(an-2)-1/(a1-2)=(n-1)1/2
将a1=4带入得:
an=2/n+2