如图,已知:梯形ABCD中,AD∥BC,AB=CD,E、F、G、H分别是AD、BC、BE、CE的中点.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 22:48:53
如图,已知:梯形ABCD中,AD∥BC,AB=CD,E、F、G、H分别是AD、BC、BE、CE的中点.
(1)求证:△ABE≌△DCE.
(2)四边形EGFH是什么特殊四边形?并证明你的结论.
(3)连接EF,当四边形EGFH是正方形时,线段EF与BC有什么关系?请说明理由.
(1)求证:△ABE≌△DCE.
(2)四边形EGFH是什么特殊四边形?并证明你的结论.
(3)连接EF,当四边形EGFH是正方形时,线段EF与BC有什么关系?请说明理由.
(1)证明:由题意可得ABCD是等腰梯形,
∴∠A=∠D,
在△ABE和△DCE中,
AE=ED
∠A=∠D
AB=DC,
∴△ABE≌△DCE.
(2)四边形EGFH是菱形.
证明:∵GF、FH是△EBC的中位线,且由(1)得EB=EC,
∴GF∥EH,GE∥HF,GF=GE,
∴四边形EGFH是菱形.
(3)EF⊥BC,且EF=
1
2BC.
证明:连接EF,
∵EFGH是正方形,
∴∠GEH=90°,即△BEC是等腰直角三角形
∴EF⊥BC,且EF=
1
2BC.
∴∠A=∠D,
在△ABE和△DCE中,
AE=ED
∠A=∠D
AB=DC,
∴△ABE≌△DCE.
(2)四边形EGFH是菱形.
证明:∵GF、FH是△EBC的中位线,且由(1)得EB=EC,
∴GF∥EH,GE∥HF,GF=GE,
∴四边形EGFH是菱形.
(3)EF⊥BC,且EF=
1
2BC.
证明:连接EF,
∵EFGH是正方形,
∴∠GEH=90°,即△BEC是等腰直角三角形
∴EF⊥BC,且EF=
1
2BC.
如图,已知:梯形ABCD中,AD∥BC,AB=CD,E、F、G、H分别是AD、BC、BE、CE的中点.
如图,在等腰梯形ABCD中AD‖BC,AB=DC,E,F,G,H分别为AD,BE,BC,CE,的中点
如图,在等腰梯形ABCD中,AB平行DC,AB=DC,E,F,G,H分别为AD,BE,BC.CE的中点.求证:四边形EF
如图,在梯形ABCD中,AD//BC,AC⊥BD,若E,F,G,H分别是梯形ABCD各边AB,BC,CD,DA的中点.
如图,在梯形ABCD中,AD//BC,AC⊥BD,若E,F,G,H分别是梯形ABCD各边AB,BC,CD,DA的中点.求
如图,在梯形ABCD中,AD∥BC,若E,F,G,H分别是梯形ABCD各边AB、BC、CD、DA的中点.当梯形ABCD满
在等腰梯形ABCD中,AD‖BC,AB=DC,E,F,G.H,分别为AD,BE,BC,CE的中点.求证:四边形EFGH
已知:如图,在四边形ABCD中,AD∥BC,点E,F,G,H分别是AB,CD,AC,BD的中点,求证:四边形EGFH是菱
已知,如图,在四边形ABCD中,AD=BC,点E,F,G,H,分别是AB,CD,AC,BD的中点,求证:四边形EGFH是
已知:如图,在四边形ABCD中,AD=BC,点E,F,G,H分别是AB,CD,AC,BD的中点,求证:四边形EGFH是菱
已知:如图,在四边形ABCD中,AD=BC,点E,F,G,H分别是AB,CD,AC,BD的中点.求证:四边形EGFH是菱
如图,已知四边形ABCD中,AB=CD,E、F、G、H分别是BD、AC、AD、BC的中点.求证:四边形EHFG是菱形