作业帮 > 数学 > 作业

化简并求值(a+√ab\√ab+b)+(√ab-b\a-√ab),其中a=2+√3,b=2-√3

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 17:16:37
化简并求值(a+√ab\√ab+b)+(√ab-b\a-√ab),其中a=2+√3,b=2-√3
化简并求值(a+√ab\√ab+b)+(√ab-b\a-√ab),其中a=2+√3,b=2-√3
a=2+√3,b=2-√3
所以ab=(2+√3)(2-√3)=4-3=1
√ab=1
a+b=(2+√3)+(2-√3)=4
(a+√ab\√ab+b)+(√ab-b\a-√ab)
=(a+1)/(1+b)+(1-b)/(a-1)
=(a²-1+1-b²)/[(1+b)(a-1)] 通分
=(a²-b²)/(a+ab-b-1)
=(a+b)(a-b)/(a+1-b-1)
=(a+b)(a-b)/(a-b)
=a+b
=4
再问: 需要先化简的。
再答: (a+√ab\√ab+b)+(√ab-b\a-√ab) =(a²-ab+ab-b²)/[(√ab+b)(a-√ab)] =(a+b)(a-b)/(a√ab+ab-ab-b√ab) =(a+b)(a-b)/(a√ab-b√ab) =(a+b)(a-b)/[(a-b)√ab] =(a+b)/√ab =(a+b)√ab/ab =4