∫∫z^2/(x^2+y^2)dxdy,∑为Z=√(2ax-x^2-y^2)(a>0)在圆柱面x^2+y^2=a^2的外
∫∫(x-y)dydz+(y-z)dzdx+(z-x)dxdy,∑为锥面z=√(x^2+y^2)的下侧,z在0到2之间
计算I=∫∫-ydxdz+(z+1)dxdy 其中Σ是圆柱面 x^2+y^2=4 被平面x+z=2和z=0 所截部分的外
计算曲面积分I=∫∫ydxdz+(z+1)dxdy 其中Σ是圆柱面 x^2+y^2=R^2被x+z=
高数 设Ω是圆柱面 x^2+y^2=a^2介于z=0和z=1之间的外侧,则ff(x^2+y^2)dxdy
曲面积分 ∫∫(y^2-x)dydz+(z^2-y)dzdx+(x^2-z)dxdy,∑为Z=1-x^2-y^2位于侧面
求一个积分题目设∑是圆柱面x^2+y^2=4介于z=0,z=3之间部分的外侧,则∫∫x^2dxdy是多少书上的答案是0,
高斯公式计算曲面积分I=∫∫-ydxdz+(z+1)dxdy 其中Σ是圆柱面 x^2+y^2=4 被x+z=2和z=0所
∫∫e^z/√(x^2+y^2 ) dxdy,∑为锥面,z=√(x^2+y^2 )及平面z=1,z=2所围的立体表面的外
设∑为平面x+y+z=1在第一卦限中的部分,则∫∫6(2x+y+z+1)dxdy等于
计算二重积分∫∫(y^2-z)dydz+(z^2-x)dzdx+(x^2-y)dxdy 其中E 为锥面z=根号下(x^2
∫∫(x^3+az^2)dydz+(y^3+ax^2)dzdx+(z^3+ay^2)dxdy,其中为上半球面z=根号下a
∫∫(x^2-y^2)dydz+(y^2-z^2)dzdx+(z^2-x^2)dxdy,S是上半椭球x^2/a^2+y^