作业帮 > 数学 > 作业

如图,直线l经过点A(1,0),且与双曲线y=m/x(x>0)交于点B(2,1),过点P(p,p-1)(p>1)

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 05:08:00
如图,直线l经过点A(1,0),且与双曲线y=m/x(x>0)交于点B(2,1),过点P(p,p-1)(p>1)
作x轴的平行线分别交曲线y=m/x(x>0)和y=-m/x(x<0)于M,N两点
(1)求m的值及直线l的解析式
(2)若点P在直线y=2上,求证△PMB相似于△PNA
如图,直线l经过点A(1,0),且与双曲线y=m/x(x>0)交于点B(2,1),过点P(p,p-1)(p>1)
按初中方法作.
1、设l直线方程为y=ax+b,当x=1时,y=0,a+b=0,a=-b,(1)
当x=2时,y=1,1=2a+b,(2),
b=-1,a=1,
故直线方程为:y=x-1.
双曲线y=m/x经过B点,B(2,1)坐标代入,1=m/2,m=2,
双曲线方程为:y=2/x,(x>0).
m=2.
2、点P在直线y=2上,则p-1=2,p=3,
P(3,2),
PN//X轴,PN直线方程为:y=2,
y=2与双曲线y=2/x相交于M(1,2)点
y=2与双曲线y=-2/x相交于N(-1,2)点,
|PN|=3-(-1)=4,
|PM|=3-1=2,
根据两点距离公式,|PB|=√[(3-2)^2+(2-1)^2]=√2,
|PA|=√[(3-1)^2+(2-0)^2]=2√2,
|PM|/|PN|=2/4=1/2,
|PB|/|PA|=√2/(2√2)=1/2,
〈MPB=〈NPA,
∴△PMB∽△PNA.