已知直线X-√3y+ √3=0经过椭圆C x^2/a^2+y^2/b^2=1(a>b>0)的一个顶点B和· 一个焦点F求
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/20 02:49:14
已知直线X-√3y+ √3=0经过椭圆C x^2/a^2+y^2/b^2=1(a>b>0)的一个顶点B和· 一个焦点F求设P是椭圆C上的动点,求「「PF」-「PB」」的取值范围,并求当 「「PF」-「PB」」取最小值时P的坐标
分析:(1)根据直线x-
3
y+
3
=0,可得B(0,1),F(−
3
,0),即以b=1,c=
3
,进而可得椭圆的离心率;
(2)0≤||PF|-|PB||≤|BF|,当且仅当|PF|=|PB|时,||PF|-|PB||=0,当且仅当P是直线BF与椭圆C的交点时,||PF|-|PB||=|BF|…(6分),|BF|=2,由此可得||PF|-|PB||的取值范围是[0,2];根据|PF|=|PB|,可得点P的坐标.
(1)依题意,B(0,1),F(−
3
,0),所以b=1,c=
3
…(2分),
所以a=
b2+c2
=2…(3分),
所以椭圆的离心率e=
c
a
=
3
2
…(4分).
(2)0≤||PF|-|PB||≤|BF|,当且仅当|PF|=|PB|时,||PF|-|PB||=0…(5分),
当且仅当P是直线BF与椭圆C的交点时,||PF|-|PB||=|BF|…(6分),|BF|=2,
所以||PF|-|PB||的取值范围是[0,2]…(7分).
设P(m,n),由|PF|=|PB|得
3
m+n+1=0…(9分),
代入椭圆方程,消去n可得13m2+8
3
m=0,∴m=0或m=-
8
3
13
m=0时,n=-1;m=-
8
3
13
时,n=
11
13
…(11分),
∴所求点P为p(0,-1)和P(-
8
3
13
,
11
13
)…(12分).
3
y+
3
=0,可得B(0,1),F(−
3
,0),即以b=1,c=
3
,进而可得椭圆的离心率;
(2)0≤||PF|-|PB||≤|BF|,当且仅当|PF|=|PB|时,||PF|-|PB||=0,当且仅当P是直线BF与椭圆C的交点时,||PF|-|PB||=|BF|…(6分),|BF|=2,由此可得||PF|-|PB||的取值范围是[0,2];根据|PF|=|PB|,可得点P的坐标.
(1)依题意,B(0,1),F(−
3
,0),所以b=1,c=
3
…(2分),
所以a=
b2+c2
=2…(3分),
所以椭圆的离心率e=
c
a
=
3
2
…(4分).
(2)0≤||PF|-|PB||≤|BF|,当且仅当|PF|=|PB|时,||PF|-|PB||=0…(5分),
当且仅当P是直线BF与椭圆C的交点时,||PF|-|PB||=|BF|…(6分),|BF|=2,
所以||PF|-|PB||的取值范围是[0,2]…(7分).
设P(m,n),由|PF|=|PB|得
3
m+n+1=0…(9分),
代入椭圆方程,消去n可得13m2+8
3
m=0,∴m=0或m=-
8
3
13
m=0时,n=-1;m=-
8
3
13
时,n=
11
13
…(11分),
∴所求点P为p(0,-1)和P(-
8
3
13
,
11
13
)…(12分).
已知直线L:x-y+1=0经过椭圆x^2/a^2+y^2/b^2=1(a>b>0)的一个焦点F和一个顶点B,(1)求椭圆
已知椭圆C:x.x/a.a+y.y/b.b=1的左焦点F及点A(0,b),原点O到直线FA的距离为√2/2b 求椭圆C的
已知直线x-2y+2=0经过椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左顶点A和上顶点D,椭圆C的右顶点
已知直线x+y-1=0经过椭圆x∧2/a∧2+y∧2/b∧2=1的顶点和焦点F,一,求椭圆的标准方程
已知椭圆的焦点在x轴上,右焦点到直线x-y+2√2=0的距离等于3,该椭圆在y轴上的两个顶点分别为A(0,-1)、B(0
已知中心在原点,焦点在x轴上的椭圆C的一个顶点为B(0,-1),右焦点到直线x-y+2√2=0的距离为3
直线x-2y+2=0经过椭圆x2a2+y2b2=1(a>b>0)的一个焦点和一个顶点,则该椭圆的离心率为( )
F是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的一个焦点,A,B是椭圆的两个顶点,椭圆的离心率为1/2.点C在
设椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左焦点F,上顶点为A,过点A与AF垂直的直线分别交椭圆C与X
已知椭圆:x^2/a^2+y^2/b^2=1(a>b>0)的左焦点为F,上顶点为A,过点A与AF垂直的直线分别交椭圆C与
椭圆题,求方程的已知椭圆的一个顶点B(0,-1),焦点在x轴上,其右焦点到直线y=x+2又根号2的距离是3,求标准方程
已知椭圆的焦点在x轴上,右焦点到直线x-2y+2√2=0的距离等于3,该椭圆在y轴上的两个顶点分别为A(0,-1),B(