作业帮 > 数学 > 作业

过原点与曲线y=X(x-1)(X-2)相切的直线方程求细解

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 10:15:41
过原点与曲线y=X(x-1)(X-2)相切的直线方程求细解
过原点与曲线y=X(x-1)(X-2)相切的直线方程求细解
【俊狼猎英】团队为您解答~
设切点为(x0,y0)
求导,得到y'=3x^2-6x+2
因为切线过原点,所以有y0/x0=y'|x=x0
即y0=3x0^3-6x0^2+2x0
而切点也在曲线上,因此y0=x0^3-3x0^2+2x0
因此2x0^3-3x0^2=0
很明显切点不是原点,因此x0不为0
从而x0=3/2
代入得到y0=-3/8
从而切线方程是y=-x/4
再问: 为什么我试卷答案上是2X-y=0一或x 4y=0
再答: 应该还有一个切线 因为曲线过原点,所以(0,0)点可以是切点 此时y'=2 即这条切线方程是y=2x