过抛物线x=2py的焦点作斜率为1的直线与抛物线交于A,B两点,A,B在轴上的正射影分别为D,C,
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/21 01:16:18
过抛物线x=2py的焦点作斜率为1的直线与抛物线交于A,B两点,A,B在轴上的正射影分别为D,C,
过抛物线x=2py的焦点作斜率为1的直线与抛物线交于A,B两点,A,B在轴上的正射影分别为D,C.若梯形ABCD的面积为12根号2,则P为多少?写下计算过程
过抛物线x=2py的焦点作斜率为1的直线与抛物线交于A,B两点,A,B在轴上的正射影分别为D,C.若梯形ABCD的面积为12根号2,则P为多少?写下计算过程
题目没有表达清楚啊!我估计题目是这样的:
过抛物线x^2=2py的焦点作斜率为1的直线与抛物线交于A,B两点.A、B在x轴上的正射影分别为D、C.若梯形ABCD的面积为12√2.则P为多少?
若是这样,则方法如下:
由抛物线方程x^2=2py,得抛物线的焦点坐标为(0,p/2),又AB过焦点,且斜率为1,
∴直线AB的方程为:y=x+p/2.
∴可令A、B的坐标分别为(m,m+p/2)、(n,n+p/2).
联立:y=x+p/2、x^2=2py,消去y,得:x^2=2p(x+p/2)=2px+p^2,
∴x^2-2px-p^2=0.
显然,m、n是方程x^2-2px-p^2=0的两根,∴由韦达定理,有:m+n=2p、mn=-p^2.
由A(m,m+p/2)、B(n,n+p/2),得:
|AD|=|m+p/2|、|BC|=|n+p/2|、|CD|=|m-n|.
很明显,A、B同在x轴的上方或下方,∴A、B的纵坐标同为正数,或同为负数,
∴|AD|+|BD|=|m+p/2+n+p/2|=|2p+p/2+p/2|=3|p|.
∴梯形ABCD的面积
=(1/2)(|AD|+|BD|)|CD|=(1/2)×3|p||m-n|
=(3/2)|p|√[(m+n)^2-4mn]=(3/2)|p|√[(2p)^2-4(-p^2)]
=(3/2)|p|×2√2|p|=3√2p^2.
而梯形ABCD的面积=12√2,∴3√2p^2=12√2,∴p^2=4,∴p=2,或p=-2.
注:若原题不是我所猜测的那样,则请你补充说明.
过抛物线x^2=2py的焦点作斜率为1的直线与抛物线交于A,B两点.A、B在x轴上的正射影分别为D、C.若梯形ABCD的面积为12√2.则P为多少?
若是这样,则方法如下:
由抛物线方程x^2=2py,得抛物线的焦点坐标为(0,p/2),又AB过焦点,且斜率为1,
∴直线AB的方程为:y=x+p/2.
∴可令A、B的坐标分别为(m,m+p/2)、(n,n+p/2).
联立:y=x+p/2、x^2=2py,消去y,得:x^2=2p(x+p/2)=2px+p^2,
∴x^2-2px-p^2=0.
显然,m、n是方程x^2-2px-p^2=0的两根,∴由韦达定理,有:m+n=2p、mn=-p^2.
由A(m,m+p/2)、B(n,n+p/2),得:
|AD|=|m+p/2|、|BC|=|n+p/2|、|CD|=|m-n|.
很明显,A、B同在x轴的上方或下方,∴A、B的纵坐标同为正数,或同为负数,
∴|AD|+|BD|=|m+p/2+n+p/2|=|2p+p/2+p/2|=3|p|.
∴梯形ABCD的面积
=(1/2)(|AD|+|BD|)|CD|=(1/2)×3|p||m-n|
=(3/2)|p|√[(m+n)^2-4mn]=(3/2)|p|√[(2p)^2-4(-p^2)]
=(3/2)|p|×2√2|p|=3√2p^2.
而梯形ABCD的面积=12√2,∴3√2p^2=12√2,∴p^2=4,∴p=2,或p=-2.
注:若原题不是我所猜测的那样,则请你补充说明.
已知抛物线C:y^2=4x的焦点为F,过F且斜率为1的直线与抛物线C交于A、B两点
过抛物线x^2=2px的焦点作斜率为1的直线与该抛物线交于 A B 两点
已知A、B为抛物线x^2=2py(p>0)上两点,直线A、B过焦点F,A、B在准线上的射影分别为C
已知A.B为抛物线x2=2py(p>0)上两点,直线AB过焦点F,A,B在准线上的射影分别为C,D,则存在实数 λ 使得
直线过抛物线C:x^2=2py(p>0)的焦点F与抛物线C交于A,B两点,过线段AB的中点M作x轴的垂线交抛物线于N点,
抛物线C:y^2=4x,F是C的焦点,过点F且斜率为1的直线l交抛物线于A、B两点
已知抛物线y^2=-4x的焦点为F,其准线与x轴交于点M,过M作斜率为K的直线l与抛物线交于A、B两点,弦AB的.
已知抛物线C y^2=4x顶点在原点,焦点F(1,0),过点P(-1,0)作斜率为k的直线l交抛物线C于两点A、B
已知抛物线C:y²=4x的准线与x轴交于m点,F为抛物线焦点,过点M斜率为k的直线l与抛物线交于点A.B两点
已知抛物线C:x^2=4y的焦点为F,经过点F的直线l交抛物线于A、B两点,过A、B两点分别作抛物线的切线,设两切线的交
已知抛物线y^2=2px(p>0),过焦点F且斜率为正的直线交其准线于点A,交抛物线于B、C两点,B在A、C之间.
过抛物线C:y=4x的焦点F作倾斜角为2π/3的直线交抛物线C于A,B两点,点D在抛物线C的准线L运动