计算二重积分∫∫xcos(x+y)dσ ,D是顶点分别为(0,0),(π,0)和(π,π)的三角形闭区域
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 22:27:25
计算二重积分∫∫xcos(x+y)dσ ,D是顶点分别为(0,0),(π,0)和(π,π)的三角形闭区域
计算二重积分xcos(x+y)dσ ,其中D是顶点分别为(0,0),(π,0)和(π,π)的三角形闭区域.
∬xcos(x+y)dxdy=[0,π]∫xdx∫[0,x]cos(x+y)d(x+y)=[0,π]∫xdx[sin(x+y)]︱[0,x]
=[0,π]∫x(sin2x-sinx)dx=[0,π][∫xsin2xdx-∫xsinxdx]=[0,π][-(1/2)∫xd(cos2x)+∫xd(cosx)]
=[0,π]{-(1/2)[xcos2x-∫cos2xdx]+[xcosx-∫cosxdx]}
=[0,π]{-(1/2)[xcos2x-(1/2)sin2x]+[xcosx-sinx]}
=[0,π]{-(1/2)xcos2x+(1/4)sin2x+xcosx-sinx}
=-(1/2)π-π=-(3/2)π
我的问题是[0,π][-(1/2)∫xd(cos2x)+∫xd(cosx)]
=[0,π]{-(1/2)[xcos2x-∫cos2xdx]+[xcosx-∫cosxdx]}这一步是怎么来的?
计算二重积分xcos(x+y)dσ ,其中D是顶点分别为(0,0),(π,0)和(π,π)的三角形闭区域.
∬xcos(x+y)dxdy=[0,π]∫xdx∫[0,x]cos(x+y)d(x+y)=[0,π]∫xdx[sin(x+y)]︱[0,x]
=[0,π]∫x(sin2x-sinx)dx=[0,π][∫xsin2xdx-∫xsinxdx]=[0,π][-(1/2)∫xd(cos2x)+∫xd(cosx)]
=[0,π]{-(1/2)[xcos2x-∫cos2xdx]+[xcosx-∫cosxdx]}
=[0,π]{-(1/2)[xcos2x-(1/2)sin2x]+[xcosx-sinx]}
=[0,π]{-(1/2)xcos2x+(1/4)sin2x+xcosx-sinx}
=-(1/2)π-π=-(3/2)π
我的问题是[0,π][-(1/2)∫xd(cos2x)+∫xd(cosx)]
=[0,π]{-(1/2)[xcos2x-∫cos2xdx]+[xcosx-∫cosxdx]}这一步是怎么来的?
[0,π][-(1/2)∫xd(cos2x)+∫xd(cosx)]
=[0,π]{-(1/2)[xcos2x-∫cos2xdx]+[xcosx-∫cosxdx]}这一步是怎么来的?----分部积分.
=[0,π]{-(1/2)[xcos2x-∫cos2xdx]+[xcosx-∫cosxdx]}这一步是怎么来的?----分部积分.
二重积分x*cos(x+y),其中D是顶点分别为(0,0),(π,0),(π,π)围成的三角形区域.
二重积分的问题I=∫∫D xcos(x+y)dxdy 其中D是顶点分别为(0,0)(180度,0)(180度,180度)
计算二重积分∫∫ |sin(x-y)|dσ,积分区域为0≦x≦y≦2π
大学高数题二重积分x^2e^(-y^2)dxdy,其中D是以(0,0),(1,1),(0,1)为顶点的三角形闭区域,计算
若D是以(0,0),(1,0)及(0,1)为顶点的三角形区域,由二重积分的几何意义知(1-x+y)dxdy
二重积分计算∫∫(x^2-y^2)dxdy D是闭区域0
计算二重积分:∫∫D cos(x+y)dxdy,其中D由y=x,y=π,x=0所围成的区域
计算二重积分∫∫(1+x)sinydxdy D区域顶点为(0,0)(1,0)(1,2)(0,1)
计算二重积分∫∫xydσ其中D是由直线x=0、y=0及x+y=1所围成的闭区域.
计算二重积分∫∫xydσ 其中D是由曲线y=x 2及直线x=1,y=0轴围成的闭区域
计算二重积分∫∫D(sinx/x)dxdy,其中D是由0≤x≤1,0≤y≤x所围成的闭区域
计算二重积分1 .计算二重积分∫∫y^2dxdy,其中D是抛物线x=y^2和直线2x-y-1=0所围成的区域2 .计算二