帮忙解一个微分方程:f^2(x) =2xf(x)/3 +x^2 f'(x)/3,且f(2)=2/9 ,求y=f(x)的表
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 17:49:50
帮忙解一个微分方程:f^2(x) =2xf(x)/3 +x^2 f'(x)/3,且f(2)=2/9 ,求y=f(x)的表达式.
f^2(x)是f(x)的平方,f'(x)是f(x)的导数.
f^2(x)是f(x)的平方,f'(x)是f(x)的导数.
令y=f(x)
y^2=2xy/3+x^2y'/3
3y^2=2xy+x^2y'
3(y/x)^2=2(y/x)+y'
令u=y/x y=ux y'=u'x+u
3u^2=3u+u'x
3u^2-3u=xdu/dx
dx/x=du/(3u^2-3u)
∫dx/x=∫du/3u(u-1)
ln|x|=1/3*(ln|u-1|-ln|u|)+C
x^3=C*(u-1)/u
因为f(2)=2/9
所以当x=2时,u=y/x=(2/9)/2=1/9
8=C*(1/9-1)/(1/9)
C=-1
所以x^3=1/u-1
u=1/(x^3+1)
y/x=1/(x^3+1)
y=x/(x^3+1)
y^2=2xy/3+x^2y'/3
3y^2=2xy+x^2y'
3(y/x)^2=2(y/x)+y'
令u=y/x y=ux y'=u'x+u
3u^2=3u+u'x
3u^2-3u=xdu/dx
dx/x=du/(3u^2-3u)
∫dx/x=∫du/3u(u-1)
ln|x|=1/3*(ln|u-1|-ln|u|)+C
x^3=C*(u-1)/u
因为f(2)=2/9
所以当x=2时,u=y/x=(2/9)/2=1/9
8=C*(1/9-1)/(1/9)
C=-1
所以x^3=1/u-1
u=1/(x^3+1)
y/x=1/(x^3+1)
y=x/(x^3+1)
f(x+y)=f(x)·f(y),且f(1)=2,求f(2)/f(1)+f(3)/f(2)+...+f(2010)/f(
已知函数f(x)的导数为f'(x),且满足f(x)=3x的平方+2xf'(2),则f'(5)=?
设函数f(x)的导函数为f'(x),且满足f(x)=3x*2+2xf'(2),则f'(5)
一直f(x)为二次函数,且f(x)+2f(-x)=3x²-x,求f(x)
f(x)=f(x+t)求y=f(x)+f(2x)+f(3x)+f(4x)的周期
设F(x)是f(x)的一个原函数,f(x)F(x)=x+x^3,且F(0)=1/根号2,F(x)> 0,求f(x)
F(X)满足F(x)+2f(x分之1)=3X,求f(x)
已知f(x)满足2f(x)+f(1/x)=3x,求f(x)
已知f(x)满足2f(x)+f(1/x)=3x,求f(x)?
已知f(x)满足2f(x)+f(-x)=-3x+1,求f(x)
已知f(x)=x^2+∫xf(x)dx求f(x)
设f(x)是定义在R上的减函数,且满足f(x+y)=f(x)*f(y),f(2)=1/9,求不等式f(x)*f(3x方-