如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°∠EDF=30°,
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/19 15:57:53
如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°∠EDF=30°,
【操作1】将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF绕点E旋转,并使边DE与边AB交于点P,边EF与边BC于点Q.
在旋转过程中,如图2,当
=1
【操作1】将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF绕点E旋转,并使边DE与边AB交于点P,边EF与边BC于点Q.
在旋转过程中,如图2,当
CE |
EA |
(操作1)EP=EQ,
证明:连接BE,根据E是AC的中点和等腰直角三角形的性质,得:BE=CE,∠PBE=∠C=45°,
∵∠BEC=∠FED=90°
∴∠BEP=∠CEQ,
在△BEP和△CEQ中
∠BEP=∠CEQ
BE=CE
∠PBE=∠C,
∴△BEP≌△CEQ(ASA),
∴EP=EQ;
如图2,EP:EQ=EM:EN=AE:CE=1:2,
理由是:作EM⊥AB,EN⊥BC于M,N,
∴∠EMP=∠ENC,
∵∠MEP+∠PEN=∠PEN+∠NEF=90°,
∴∠MEP=∠NEF,
∴△MEP∽△NEQ,
∴EP:EQ=EM:EN=AE:CE=1:2;
如图3,过E点作EM⊥AB于点M,作EN⊥BC于点N,
∵在四边形PEQB中,∠B=∠PEQ=90°,
∴∠EPB+∠EQB=180°,
又∵∠EPB+∠MPE=180°,
∴∠MPE=∠EQN,
∴Rt△MEP∽Rt△NEQ,
∴
EP
EQ=
ME
EN,
Rt△AME∽Rt△ENC,
∴
CE
EA=m=
EN
ME,
∴
EP
EQ=1:m=
AE
CE,
EP与EQ满足的数量关系式1:m,即EQ=mEP,
∴0<m≤2+
6,(因为当m>2+
6时,EF和BC变成不相交).
证明:连接BE,根据E是AC的中点和等腰直角三角形的性质,得:BE=CE,∠PBE=∠C=45°,
∵∠BEC=∠FED=90°
∴∠BEP=∠CEQ,
在△BEP和△CEQ中
∠BEP=∠CEQ
BE=CE
∠PBE=∠C,
∴△BEP≌△CEQ(ASA),
∴EP=EQ;
如图2,EP:EQ=EM:EN=AE:CE=1:2,
理由是:作EM⊥AB,EN⊥BC于M,N,
∴∠EMP=∠ENC,
∵∠MEP+∠PEN=∠PEN+∠NEF=90°,
∴∠MEP=∠NEF,
∴△MEP∽△NEQ,
∴EP:EQ=EM:EN=AE:CE=1:2;
如图3,过E点作EM⊥AB于点M,作EN⊥BC于点N,
∵在四边形PEQB中,∠B=∠PEQ=90°,
∴∠EPB+∠EQB=180°,
又∵∠EPB+∠MPE=180°,
∴∠MPE=∠EQN,
∴Rt△MEP∽Rt△NEQ,
∴
EP
EQ=
ME
EN,
Rt△AME∽Rt△ENC,
∴
CE
EA=m=
EN
ME,
∴
EP
EQ=1:m=
AE
CE,
EP与EQ满足的数量关系式1:m,即EQ=mEP,
∴0<m≤2+
6,(因为当m>2+
6时,EF和BC变成不相交).
如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°将三角板DEF的直角顶点E
24.(本题10分)28.如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°
如图1,已知△ABC中,AB=BC=1,∠ABC=90°,把一块含30°角的三角板DEF的直角顶点D放在AC的中点上(直
如图(1),若DE//AB,EF//BC,DF//AC,则易证∠BAC=∠EDF,∠ABC=∠DEF,∠BCA=∠EFD
如图一,AB=BC=1,∠ABC=90°,把一块含30°角的直角三角板DEF的直角顶点D放在AC的中点上,将直角三角板D
如图,已知△ABC中AB=AC=1,∠ABC=90°,把一块含30°角的直角三角板DEF的直角顶点D放在AC的中点上
如图,已知Rt△ABC中,AB=BC,AC=2,把一块含30°角的三角板DEF的直角顶点D放在AC的中点D处,且短边DE
如图,已知△ABC中,AB=CB=1,∠ABC=90°,把一块含30°角的直角三角板DEF的直角顶点D放在AC的中点上.
如图,在△ABC中,AC=BC,∠C=90°,将一块三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的
如图,在等腰△ABC和等腰△EDF中,AB=BC,DE=DF,∠ABC =∠EDF=120°,M是EF,AC的中点.则A
已知三角形ABC中,AB=AC,∠BAC=90°,直角∠EDF的顶点D是BC中点,两边DE,DF分别交AB,AC于点E,
(1)已知,在△ABC和△DEF中,AB=DE,BC=EF,∠BAC=∠EDF=100°,求证:△ABC≌△DEF(2)