向量m=(acosx,cosx),n=(2cosx,bsinx),f(x)=m·n,且f(0)=2,f(π/3)=1/2
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 01:16:40
向量m=(acosx,cosx),n=(2cosx,bsinx),f(x)=m·n,且f(0)=2,f(π/3)=1/2+√3/2
1)求f(x)的最大值与最小值
2)若f(α)=0,α∈(0,2π),求α的值
1)求f(x)的最大值与最小值
2)若f(α)=0,α∈(0,2π),求α的值
m.n
=(acosx,cosx).(2cosx,bsinx)
= 2a(cosx)^2+ bsinxcosx = f(x)
f(0) = 2a = 2
=> a = 1
f( π/3) = 2(1/4) + b(√3/4) = 1/2+√3/2
b(√3/4) = √3/2
b = 2
f(x) = 2(cosx)^2 + 2sinxcosx
f'(x) = -4cosxsinx + 2(-(sinx)^2 +(cosx)^2)
= -2sin2x+ 2cos2x = 0
sin2x = cos2x
tan2x = 1
x = π/8 or 5π/8
f''(x) = -4cos2x- 4sin2x
f''(π/8) < 0 ( max)
f''(5π/8) > 0 (min)
f(x) = 2(cosx)^2 + 2sinxcosx
= cos2x+1 + sin2x
maxf(x) =f(π/8)
= √2/2 + 1 +√2/2
= 1+√2
minf(x) = f(5π/8)
= -√2/2 +1 -√2/2
= 1-√2
f(α)=0
=>cos2α+1 + sin2α = 0
(√2/2) (sin2α + cos2α) = - (√2/2)
(2α+π/4) = (7π/4) or 5π/4
α = 3π/4 or π/2
=(acosx,cosx).(2cosx,bsinx)
= 2a(cosx)^2+ bsinxcosx = f(x)
f(0) = 2a = 2
=> a = 1
f( π/3) = 2(1/4) + b(√3/4) = 1/2+√3/2
b(√3/4) = √3/2
b = 2
f(x) = 2(cosx)^2 + 2sinxcosx
f'(x) = -4cosxsinx + 2(-(sinx)^2 +(cosx)^2)
= -2sin2x+ 2cos2x = 0
sin2x = cos2x
tan2x = 1
x = π/8 or 5π/8
f''(x) = -4cos2x- 4sin2x
f''(π/8) < 0 ( max)
f''(5π/8) > 0 (min)
f(x) = 2(cosx)^2 + 2sinxcosx
= cos2x+1 + sin2x
maxf(x) =f(π/8)
= √2/2 + 1 +√2/2
= 1+√2
minf(x) = f(5π/8)
= -√2/2 +1 -√2/2
= 1-√2
f(α)=0
=>cos2α+1 + sin2α = 0
(√2/2) (sin2α + cos2α) = - (√2/2)
(2α+π/4) = (7π/4) or 5π/4
α = 3π/4 or π/2
已知向量M=(2acosx,sinx),向量n=(cosx,bcosx),函数f(x)=向量m*向量n-根号3/2,函数
已知向量m=(2sinx,cosx-sinx),n=(根号3cosx,cosx+sinx),F(x)=m.n
已知向量n=(2cosx,根号3sinx),向量m=(cosx,2cosx),设f(x)=n m+a.(1)若x属于[0
已知向量m=(根号3sin2x+2,cosx),向量n=(1,2cosx),设函数f(x)=向量m*向量n.求f(x)的
已知向量m=(根号3sin2x+2,cosx),向量n=(1,2cosx),设函数f(x)=向量m*向量n.求f(x)
(2014•文登市二模)已知m=(bsinx,acosx),n=(cosx,-cosx),f(x)=m•n+a,其中a,
已知向量m=(sin2x,2cosx),n=(根号3,cosx) 函数f(x)=m*n-1
已知向量m=(cosx,2sinx),向量n=(2cosx,-sinx),f(x)=向量m*向量n
已知向量m=(2cosx,根号3cosx-sinx),n=(sin(x+派/6),sinx),且满足f(x)=m·n.(
设函数f(x)=向量m·n,其中向量m=(2cosX,1),向量n=(cosX,根号3sin2X)[分数追加]
已知向量m=(cosx+sinx.√3cosx),向量n=(cosx-sinx,2sinx),设函数f(x)=m×n+1
已知向量m=(根号3sinx+cosx,1),n=(f(x),cosx),且m//n.