作业帮 > 数学 > 作业

求由这个方程y=tan(x+y)

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 05:16:51
求由这个方程y=tan(x+y)
所确定的隐函数的二阶导数d^2y/dx^2 答案是-2csc^2(x+y)*cot^3(x+y)麻烦要过程
求由这个方程y=tan(x+y)
y=tan(x+y)
y'=[sec(x+y)]^2*(1+y')

y'=[sec(x+y)]^2/{1-[sec(x+y)]^2}=-[sec(x+y)]^2/tan(x+y)]^2=-1/[sin(x+y)]^2
则y''={-1/[sin(x+y)]^2}'={-2[sin(x+y)]cos(x+y)}*(1+y')1/[sin(x+y)]^4

y''={-2[sin(x+y)]cos(x+y)}(1-1/[sin(x+y)]^2)*(1+y')1/[sin(x+y)]^4
={-2[sin(x+y)]cos(x+y)}[cos(x+y)]^2*1/[sin(x+y)]^4
化简下去就行了
真麻烦!