求由这个方程y=tan(x+y)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 05:16:51
求由这个方程y=tan(x+y)
所确定的隐函数的二阶导数d^2y/dx^2 答案是-2csc^2(x+y)*cot^3(x+y)麻烦要过程
所确定的隐函数的二阶导数d^2y/dx^2 答案是-2csc^2(x+y)*cot^3(x+y)麻烦要过程
y=tan(x+y)
y'=[sec(x+y)]^2*(1+y')
则
y'=[sec(x+y)]^2/{1-[sec(x+y)]^2}=-[sec(x+y)]^2/tan(x+y)]^2=-1/[sin(x+y)]^2
则y''={-1/[sin(x+y)]^2}'={-2[sin(x+y)]cos(x+y)}*(1+y')1/[sin(x+y)]^4
则
y''={-2[sin(x+y)]cos(x+y)}(1-1/[sin(x+y)]^2)*(1+y')1/[sin(x+y)]^4
={-2[sin(x+y)]cos(x+y)}[cos(x+y)]^2*1/[sin(x+y)]^4
化简下去就行了
真麻烦!
y'=[sec(x+y)]^2*(1+y')
则
y'=[sec(x+y)]^2/{1-[sec(x+y)]^2}=-[sec(x+y)]^2/tan(x+y)]^2=-1/[sin(x+y)]^2
则y''={-1/[sin(x+y)]^2}'={-2[sin(x+y)]cos(x+y)}*(1+y')1/[sin(x+y)]^4
则
y''={-2[sin(x+y)]cos(x+y)}(1-1/[sin(x+y)]^2)*(1+y')1/[sin(x+y)]^4
={-2[sin(x+y)]cos(x+y)}[cos(x+y)]^2*1/[sin(x+y)]^4
化简下去就行了
真麻烦!
设函数y=y(x)由方程lny=tan(xy)所确定,求dy
设y=y(x)是由方程y=tan(x+y)所确定的隐函数,求微分dy
1、设函数y=y(x)由方程xy^3=y-1所确定,求dy/dx;2、已知y=arc tan(e^x),求dy
求由方程y=cos2(x+y)所确定的隐函数y=y(x)的导数 y`
已知函数y=y(x)是由方程y=sin(x+y)确定,求y的导数
设y=In(sec X+tan X ),求y'
设函数y=y(x)由方程y+e^(x+y)=2x确定,求dx/dy
函数y=f(x)由方程xy^2+sinx=e^y,求y′
设函数y由方程ln y+x/y=0确定,求dy/dx
求由方程XY=e^x+y确定的隐函数Y的导数Y'
设由下列方程确定隐函数 y=f(x),求y''.方程是y=1+(xe)^y
函数y=arctane^x求dy 函数y=y(x)由方程x-y-e^y=0确定,求y'(0) 求由方程y=1-xe^y确