作业帮 > 数学 > 作业

a,b,c是三角形ABC的三边,任意实数x,f(x)=b^2*x^2+(b^2+c^2-a^2)+c^2,则 f(x)于

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 09:51:23
a,b,c是三角形ABC的三边,任意实数x,f(x)=b^2*x^2+(b^2+c^2-a^2)+c^2,则 f(x)于0比较大小关系
a,b,c是三角形ABC的三边,任意实数x,f(x)=b^2*x^2+(b^2+c^2-a^2)+c^2,则 f(x)于
判别式=(b^2+c^2-a^2)^2-4b^2c^2
=(b^2+c^2-a^2)^2-(2bc)^2
=( b^2+c^2-a^2+2bc)•( b^2+c^2-a^2-2bc)
=[(b+c)^2-a^2]•[(b-c)^2-a^2]
=(b+c+a)(b+c-a)(b-c+a)(b-c-a)
由于a、b、c是三角形的三边,所以b+c+a>0,b+c-a>0,b-c+a>0,b-c-a0