a,b,c是三角形ABC的三边,任意实数x,f(x)=b^2*x^2+(b^2+c^2-a^2)+c^2,则 f(x)于
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 09:51:23
a,b,c是三角形ABC的三边,任意实数x,f(x)=b^2*x^2+(b^2+c^2-a^2)+c^2,则 f(x)于0比较大小关系
判别式=(b^2+c^2-a^2)^2-4b^2c^2
=(b^2+c^2-a^2)^2-(2bc)^2
=( b^2+c^2-a^2+2bc)•( b^2+c^2-a^2-2bc)
=[(b+c)^2-a^2]•[(b-c)^2-a^2]
=(b+c+a)(b+c-a)(b-c+a)(b-c-a)
由于a、b、c是三角形的三边,所以b+c+a>0,b+c-a>0,b-c+a>0,b-c-a0
=(b^2+c^2-a^2)^2-(2bc)^2
=( b^2+c^2-a^2+2bc)•( b^2+c^2-a^2-2bc)
=[(b+c)^2-a^2]•[(b-c)^2-a^2]
=(b+c+a)(b+c-a)(b-c+a)(b-c-a)
由于a、b、c是三角形的三边,所以b+c+a>0,b+c-a>0,b-c+a>0,b-c-a0
已知a、b、c是三角形ABC的三边,且一元二次方程x²+2(b-c)X+(c-a)(a-b)=0,有两个实数根
三角形三边abc,设f(x)=a^2x^2-(a^2-b^2)x-4c^2 若f(1)=0B-C=6
已知a,b,c是三角形ABC的三边,求证:方程bx2 2(a-c)x-(a+b-c)=0有两个不相等的实数
已知a,b,c是三角形abc的三边长且关于x的方程(c-b)X.X+2(b-a)X+a-b=0,有两个实数根,那么这个三
已知二次函数f(x)=ax^2+bx+c(a,b,c∈R)满足:对于任意实数x,都有f(x)>=x, f(x)
1.若△ABC的三边长为a,b,c,f(x)=b∧2x∧2+(b∧2+c∧2-a∧2)x+c∧2,则函数f(x)的图像:
已知a,b,c为三角形ABC三边,求证:关于X的一元二次方程cx^2-(a+b)x+c/4=0有两个不相等实数根
已知a、b、c是三角形ABC的三边,且关于x的一元二次方程(c-b)x+2(b-a)x+(a-b)=0有两个相等的实数根
已知abc是三角形ABC三边,求证:方程bx的平方+2(a-c)x-(a+b-c)=0有两个不相等的实数根.
设三角形ABC的三边分别为a、b、c,a、b是方程x-(c=2)x=2(c+1)=0的两个实数根,试判断三角形ABC的形
1)三角形ABC中,三边分别是a,b,c.关于x的方程3x^2+2(a+b+c)x+(ab+bc+ca)=0.
已知三角形ABC的三边为a,b,c,且关于x的一元二次方程x的平方+2(b-c)x=(b-c)(a-b)有两个相等的实数