一个关于素数的证明设A=P1^aP2^bP3^c.其中P是素数a,b,c..等等是指数然后它们乘起来.证明它们的因数的个
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 05:04:55
一个关于素数的证明
设A=P1^aP2^bP3^c.其中P是素数a,b,c..等等是指数然后它们乘起来.证明它们的因数的个数为(a+1)(b+1)(c+1).比如说108=(2^2)(3^3)的所有因子为1,2,4,3,9,27,6,18,54,12,36,108共12个,这是我在《什么是数学》上看到的一个题,比较笨不会证..有什么错漏的地方指正一下...
设A=P1^aP2^bP3^c.其中P是素数a,b,c..等等是指数然后它们乘起来.证明它们的因数的个数为(a+1)(b+1)(c+1).比如说108=(2^2)(3^3)的所有因子为1,2,4,3,9,27,6,18,54,12,36,108共12个,这是我在《什么是数学》上看到的一个题,比较笨不会证..有什么错漏的地方指正一下...
看成取数字或者取球的组合就好了.
把P1、P2、P3……看成红、绿、蓝……色的球
把A、B、C分别看成不同颜色小球的个数
那么单独取出红、绿、蓝……色小球的种数,分别就是:
取红色小球有【从不取到取完】 A + 1 种
取绿色小球有【从不取到取完】 B + 1 种
取蓝色小球有【从不取到取完】 C + 1 种
……
根据乘法原理,所有这些小球,从不取到取完的组合数就有:
(A + 1)(B+ 1)(C + 1)…… 种
显然,全不取对应因数1,全取对应该数本身.之中任意两个取法间,必然是球、色互不相同的,也保证了因数之间互不相等.
把P1、P2、P3……看成红、绿、蓝……色的球
把A、B、C分别看成不同颜色小球的个数
那么单独取出红、绿、蓝……色小球的种数,分别就是:
取红色小球有【从不取到取完】 A + 1 种
取绿色小球有【从不取到取完】 B + 1 种
取蓝色小球有【从不取到取完】 C + 1 种
……
根据乘法原理,所有这些小球,从不取到取完的组合数就有:
(A + 1)(B+ 1)(C + 1)…… 种
显然,全不取对应因数1,全取对应该数本身.之中任意两个取法间,必然是球、色互不相同的,也保证了因数之间互不相等.
已知M=A乘B乘C,其中A,B,C都是素数,那么数M的因数中是合数的有【 】等4个?
设P是素数,证明:对任意的正整数a,p|a^p-a.
已知M等于a乘b乘c,其中abc都是素数,那么M的因数中是合数的有哪些数
设p是一个大于1的整数且具有以下性质:对于任意整数a,b,如果p整除ab,则p整除a或p整除b.证明,p是一个素数.
设a,b,c,d是正整数,满足ab=cd,证明a四次方+b四次方+c四次方+d四次方不是素数
数论--素数我刚申的号就20分 对任意的k,设p1、p2、……、pk为前k个素数,证明存在无穷多数对(p,p+2),其中
设Z是整数环,p是一个素数,证明(p)是Z的素理想
怎么证明:若P是奇素数,则P|(a的p次方+(p-1)!a)?
证明:如果整数p>1且P是(P-1)!+1的因数,则p一定是素数.
c语言:一个100-200之间的随机数a,然后生成a个2-1000的随机数,然后将其中的素数8个一行输出
【程序设计题】~加急!一个大于六的偶数可以表示为两个素数之和,即C=A+B,其中C为偶数,AB为素数、
如果a^n -1是一个素数,证明a=2且n是素数