在四边形ABCD中,M、N分别是对角线AC、BD的中点,且AD、BC的延长线交于P,求证:S三角形PMN=1/4S四边形
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 16:12:55
在四边形ABCD中,M、N分别是对角线AC、BD的中点,且AD、BC的延长线交于P,求证:S三角形PMN=1/4S四边形 ABC
在四边形ABCD中,M、N分别是对角线AC、BD的中点,且AD、BC的延长线交于P,求证:S三角形PMN=1/4S四边形ABCD
在四边形ABCD中,M、N分别是对角线AC、BD的中点,且AD、BC的延长线交于P,求证:S三角形PMN=1/4S四边形ABCD
证明 设E,F分别边AB,CD的中点,连ME,MF,NE,NF.
则ME‖BC,MF‖AD,NE‖AD,NF‖BC,
所以四边形EMFN为平行四边形.
由于NF‖BC,所以得:
S(PFN)=S(BNF)=S(BDF)/2=S(BDC)/4.(1)
同理可得:S(PFM)=S(ACD)/4.(2)
由于有
S(PMN)=S(PFN)+S(PFM)+S(FMN)
=[S(BDC)+S(ACD)]/4+S(EMFN)/2.(3)
所以只需证明:
S(EMFN)=[S(ABD)-S(ACD)]/2.(4)
延长EM,NF分别交AP于G,H.平行四边形ENHG的底EN=AD/2,EN上高[即EN与AB的距离]等于三角形ABD的边AB上的高的一半,所以
S(ENHG)=S(ABD)/2.
同理可得:S(FMGH)=S(ACD)/2.
故 S(EMFN)=S(ENHG)-S(FMGH)=[S(ABD)-S(ACD)]/2.
所以(4)式成立,
将(4)式代入(3)式即得所得结论.
则ME‖BC,MF‖AD,NE‖AD,NF‖BC,
所以四边形EMFN为平行四边形.
由于NF‖BC,所以得:
S(PFN)=S(BNF)=S(BDF)/2=S(BDC)/4.(1)
同理可得:S(PFM)=S(ACD)/4.(2)
由于有
S(PMN)=S(PFN)+S(PFM)+S(FMN)
=[S(BDC)+S(ACD)]/4+S(EMFN)/2.(3)
所以只需证明:
S(EMFN)=[S(ABD)-S(ACD)]/2.(4)
延长EM,NF分别交AP于G,H.平行四边形ENHG的底EN=AD/2,EN上高[即EN与AB的距离]等于三角形ABD的边AB上的高的一半,所以
S(ENHG)=S(ABD)/2.
同理可得:S(FMGH)=S(ACD)/2.
故 S(EMFN)=S(ENHG)-S(FMGH)=[S(ABD)-S(ACD)]/2.
所以(4)式成立,
将(4)式代入(3)式即得所得结论.
四边形ABCD中,M,N分别是对角线AC,BD上的中点,又AD,BC的延长线交于P,求证:S三角形PMN=1/4 S四边
如图,在四边形ABCD中,AD=BC,点P,M,N分别是AB,AC,BD的中点.求证:∠ PMN=∠ PNM
在四边形ABCD中,对角线AC,BD相交于P,且AC=BD,E,F分别是AB,CD的中点,EF交BD于M,交AC于N求证
在四边形ABCD中,对角线AC与BD相交于O,且AC=BD,M、N分别是AD、BC的中点,MN与AC、BD交于E、F.求
在四边形ABCD中,对角线AC与BD相交于O,且AC=BD,M、N分别是AD、BC的中点,MN与AC、BD交于E、F.
已知在四边形ABCD中,E.F分别是边AD.BC的中点,且EF平行于AB,与对角线AC.BD分别交于M.N两点,若EF=
(2014•晋江市质检)如图,在四边形ABCD中,M、N、P、Q分别是AD、AB、BC、CD的中点,且对角线AC⊥BD,
已知圆内接四边形ABCD,AB,CD的中点分别是P,Q,延长AD,BC交于M,AC,BD交于N,求证:PQ平行于MN
四边形abcd对角线ac,bd相交于点p,且ac=bd.e,f分别是ab,cd的中点,ef交bd于m,交AC于N,求证;
在梯形ABCD中,AD平行于BC,对角线AC,BD交于点O,M,N分别为BD,AC的中点.求证:MN=(BC-AD)
四边形ABCD中,对角线AC BD相交于O 且AC=BD M、N分别为AD、BC的中点 连接MN交AC、BD于E、F 求
一道几何题,已知M为四边形ABCD对角线BD的中点,MN//AC交BC与点N,求证:S四边形ANCD=S△ABN